BLEEDING EDGE PRESS

CREATING
INTERFACES

WITH

BULMA

Jeremy Thomas, creator of Bulma

Oleksii Potiekhin, Mikko Lauhakari,
Aslam Shah & Dave Berning

Creating Interfaces with Bulma

By Jeremy Thomas, creator of Bulma, Oleksii Potiekhin, Mikko Lauhakari, Aslam Shah, and
Dave Berning

Creating Interfaces with Bulma
Copyright (c) 2018 Bleeding Edge Press

All rights reserved. No part of the contents of this book may be reproduced or transmitted
in any form or by any means without the written permission of the publisher.

This book expresses the authors views and opinions. The information contained in this
book is provided without any express, statutory, or implied warranties. Neither the
authors, Bleeding Edge Press, nor its resellers, or distributors will be held liable for any
damages caused or alleged to be caused either directly or indirectly by this book.

Cover: CCO Creative Commons, Free for commercial use,No attribution required
https://pixabay.com/en/superhero-super-hero-girl-costume-2483674/

ISBN 9781939902498

Published by: Bleeding Edge Press, Santa Rosa, CA 95404

Title: Creating Interfaces with Bulma

Authors: Jeremy Thomas, Oleksii Potiekhin, Mikko Lauhakari, Aslam Shah, & Dave Berning
Acquisitions Editor: Christina Rudloff

Editors: Troy Mott & Dave Berning

Website: bleedingedgepress.com

Table of Contents

Foreword by Jeremy Thomas Xi
Preface Xiii
CHAPTER 1: Understanding Bulma, terminology, and concepts 17
How is Bulma unique? 17
Simple columns system 17
Readability 18
Customizable 19
Modular 20
Columns 20
Modifiers 21
Components 22
Helper classes 22
Summary 23
CHAPTER 2: Creating and controlling forms with Bulma 25
Template requirements 25
Centered layout 27
Resizing the single column 28
Implementing the form’s content 29
Logo 29
Email input 30

Password input 32

Table of Contents

Remember me checkbox
Login button

Summary

CHAPTER 3: Creating navigations and vertical menus
Creating the navigation bar
The navigation’s branding
The navigation’s menu
The Navigation’s dropdown menu
The main section
The sidebar menu

Summary

CHAPTER 4: Creating responsive grids with common components

The toolbar
Similarities between navbar and level
Creating the toolbar

The books grid

The bookitem

Pagination

Summary

CHAPTER 5: Creating breadcrumbs and file upload fields

New book detail template
Breadcrumb
The book form

Edit the book template

Summary

CHAPTER 6: Creating tables and selecting dropdowns
The list of customers
Updating the toolbar
Implementing the table of customers
New customer template

Edit customer template

Vi

33
33
34

35
36
36
37
38
40
41
44

45
45
46
46
48
49
52
53

55
55
55
56
59
62

63
63
64
65
67
70

Summary

CHAPTER 7: Creating more tables and selecting dropdowns
List of orders
Edit Order
Order information
List of books
Row Form

Summary

CHAPTER 8: Creating notifications and cards
Title, time range
Important metrics
Latest orders
Most popular books with cards
Basicstructure of a card
Most loyal customers

Summary

CHAPTER 9: Using Bulma with Vanilla JavaScript
Report a Bug - Modal
Mobile menu toggle
Notifications
Dropdowns
Delete a book item from books page
Delete a customer from customer page

Summary

CHAPTER 10: Using Bulma with Angular
Project preparation
Application
Components

Summary

CHAPTER 11: Using Bulma with VueJS
Installing Vue-CLI

Table of Contents

71

73
73
76
77
78
80
81

83
83
85
86
88
88
90
93

95
95
98
98
99
100
100
100

101
101
102
103
116

117
117

Vii

viii

Table of Contents

Setting up the Vue project
Preparing pages
Vue-Router
Installing Bulma
Option 1: Adding Bulma via a CDN
Option 2: Adding Bulma via NPM (Recommended)
Make use of Font-Awesome
Setting up components with Vue
Admin skeleton
Implementing the dashboard
First Vue template: Login page
Creating the “Report a Bug” component
Creating a component
Add the Modal to the App Template
Books page
Sorting books
Filtering books
Creating and editing a book

Summary

CHAPTER 12: Using Bulma with React

What you will be making

Installing “Create React App”

Quick overview of Create-React-App
The app structure

Installing Bulma
Option 1: Adding Bulma via a CDN
Option 2: Adding Bulma via NPM

Routing with React Router 4
BrowserRouter
Route
Final App.js With Routes

Creating the Login component

Login.jsx

118
118
119
120
120
121
122
123
123
126
129
132
132
135
136
137
138
139
142

143
143
143
144
144
145
145
145
146
146
146
147
147
148

Creating the Login form
Creating the collection
The Header
Header.jsx
HeaderBrand.jsx
HeaderUserControls.jsx
Putting the header together
Footer.jsx
The book collection body
Collection.jsx
CollectionSingleBook.jsx
CollectionSingleBookDetail.jsx
Tying the Collections Component Together
Runningthe application

Summary

CHAPTER 13: Customizing Bulma

Setting up node-sass

Creating package.json

Creating a sass/custom.scssfile
Importing Bulma
Importing the Google fonts
Introducing your own variables
Understanding Bulma’s variables
Overriding Bulma'’s initial variables
Overriding Bulma’s component variables
Updatingthe HTML
Custom rules

Second font

Bigger controls

Using the Rubik font

Updating the sidebar menu

Fixing the navbar

Better tables

Table of Contents

150
153
154
154
156
157
160
160
161
162
163
164
166
167
168

169
169
170
170
172
173
173
173
174
175
179
180
180
180
182
184
185
186

Table of Contents

Bold titles
Responsiveness with Bulma mixins
Media

Final Summary

187
187
188
190

Foreword by Jeremy Thomas

| discovered CSS almost by accident in 2007. During an accessibility class, the teacher was
emphasizing the need to separate content from styling, and told us it could be achieved
with CSS. It was a breakthrough for me: no need for Dreamweaver and complex table lay-
outs anymore. | could write in a simple language that would translate my rules into visual
interactive interfaces. | didn’t know this event would eventually define the start of my ca-
reer as a web developer.

For the next 10 years, while | would teach myself various web development tools (PHP,
JavaScript, Ruby, Node...), CSS would remain my strongest skill, and the reason why clients
and companies would hire me. In the meantime, new CSS features were being developed
and adopted by browsers. | was already pretty happy with shadows, rounded corners, cus-
tom fonts, and gradients, since they didn’t require PNG hacks or convoluted workarounds
anymore. But by the end of 2015, a new layout model was becoming increasingly popular.
It was called Flexbox.

Flexbox was a game changer: instead of relying on floats, clears and a complex markup
to define columns, you could define a Flexbox container with automatically resized col-
umns and you had yourself a grid system! This solution would also drastically simplify the
HTML markup. | knew Flexbox could be used to develop something new, something power-
ful, something exciting! But | didn’t know what exactly.

By the time I'd discovered Flexbox, | was already using a small Sass framework I’d built
and maintained myself over several months. | used it to kickstart various CSS projects,
both personal and professional. Flexbox turned out to be the missing piece: the main ap-
peal of a CSS framework is to simplify the process of defining page layouts, and Flexbox’s
syntax was the perfect candidate for a clearer and more flexible markup. While Bulma was
initially a CSS generator | was working on that was making use of “capsules” (hence the
name) as modular components, | decided to ditch the idea completely and rather combine
my Sass framework with my recent Flexbox knowledge into a new modern CSS framework.
Bulma was born.

Since I've always been an open source advocate, | decided to post my small framework
on GitHub and share it across various tech and social websites. | thought “If this small
framework | built solves a problem of mine, there’s a chance it might solve a problem for
someone else too.” While the initial launch was really quiet, it suddenly went viral. Bulma
was trending on GitHub, reached the Hacker News and Product Hunt homepages, and was
shared hundreds of times via Twitter. | realized | had built something not only interesting,

Xi

Xii

Foreword by Jeremy Thomas

but actually useful. | remained cautious though. Maybe Bulma’s popularity was only a sud-
den burst of excitement that would fade away soon. But it did not.

Two years into the project, Bulma has been starred 24,000 times on GitHub, and down-
loaded or installed more than 1 million times. 150 contributors have helped close 860 is-
sues and merge almost 300 pull requests. It shows how the open source community can
turn a small CSS project into a major asset for web developers. And considering how it
spawned gorgeous websites and made lots of businesses thrive, there is no question that
Bulma will continuously grow and remain a widely used tool in the future.

I’ve acquired a lot of knowledge in the process, whether it’s new CSS techniques or bet-
ter writing skills. I’'ve also seen many fans express their love for Bulma, praising its simplici-
ty and ease of use. But | think the best reward for me is to know that I've been able to help
thousands of people make the web a place of their own.

Preface

Who is this book for?

This book is for any designer or developer willing to understand how to use Bulma, and
learn how to use Bulma’s components and layout system to create their own web interface.

Even if you are not already familiar with Bulma, it only takes a few minutes to get ac-
quainted with the framework.

What do you need to know prior to reading?

You don’t need to know Bulma to read this book! You only need to have an understanding
of how HTML and CSS work, but you don’t need an in-depth knowledge since Bulma’s pur-
pose is to avoid writing CSS!

You also need a code editor: Sublime Text, Atom, Notepad++, IntelliJ, Vim, Emacs, etc.
The only requirement is for your editor to have syntax highlighting and to be able to save a
file with a specific extension (like .html or .css).

You will also need a modern browser: Google Chrome, Mozilla Firefox, Microsoft Edge or
Apple Safari.

The online book publisher example

All of the code for the sample project in this book can be found at:
https://github.com/troymott/bulma-book-code

What will this book provide?

This book is a step-by-step guide that will teach you how to build a web interface from
scratch using Bulma.

The example website that you will build is an administration interface for an online
book publisher, where users can log in to manage three content types: Books, Customers,
and Orders. This interface has been chosen because it satisfies all of the requirements for

Xiii

Xiv

Preface

common CRUD (Create/Read/Update/Delete) functionalities, which exist in any type of
website or CMS. You can access all of the code for this example on Github (https://
github.com/troymott/bulma-book-code).

By the end of this book, you will understand how to:

+ Createlayouts with Bulma

« Work withcomponents in Bulma

+ Design specific elements for your Ul

« Extend components with your own setup

The book will also show you how Bulma can be integrated with JavaScript through the
following frameworks: React, Angular, VueJS, and Vanilla JS.

Author bios

Jeremy Thomas has been a web designer for more than 10 years. While studying graphic
design in France, he discovered CSS during an accessibility class and instantly fell in love
with the language. That’s when he decided to make a career out of it. He has worked with
eCommerce companies, agencies (Sony, Microsoft, Louis Vuitton, freelancing, tech start-
ups, code teaching).

By the beginning of 2016, Jeremy had developed a small framework that he was using
himself for kickstarting his projects, and decided to share it for free to the world: Bulma
was born. Still active in the open source community, he has launched other useful web re-
sources like MarkSheet, CSS Reference, HTML Reference and Web Design in 4 minutes. His
goal is to continuously share the knowledge he acquires through his daily work.

Book co-authors and contributors

Oleksii Potiekhin is a web developer by profession and by destiny with more then nine
years of production experience in developing and designing GUIs on different platforms
and technologies. He has worked with: Volvo, Scania, Volkswagen, Renault, John Lewis
Partnership, Thomson Reuters, etc. He fell in love with Bulma in 2017 because it provides
everything you need to build a modern Ul for any kind of project.

Mikko Lauhakari is a developing web-creative, or just simply a web nerd. He’s had a
passion for the web since the last bubble burst. With a background in web programming
studies at Kalmar University, Sweden, he has a wide knowledge base of different program-
ming languages.

Aslam Shah is a Senior JavaScript Developer at Risk.ldent GmbH. He has 5+ years of
experience in developing front-end interfaces for small to large-sized companies and be-
lieves that technology never stops evolving, and that we have to learn new things every
single day to keep ourselves up to date; we shouldn’t be scared of moving from old things
to new ones.

Preface

Dave Berning has been a front-end web developer for more than six years. He gradu-
ated from the University of Cincinnati where he learned to create interactive websites with
HTML, CSS, and JavaScript. David builds rich progressive web applications with Vue and
React. He is also a writer for Alligator.io, and organizer of the CodePen Cincinnati meetups
where he leads workshops and discussions about the latest technology in the field. You can
find him almost anywhere on the internet as @daveberning.

Technical Reviewers

We would like to the thank the following technical reviewers for their early feedback and
generous, careful critiques: lvan Kovic, Frangois-Xavier Costanzo, Dario Castané, Stanley
Eosakul, Samantha Baita, Aaron Ang, and Dave Berning.

XV

Understanding Bulma,
terminology, and concepts

If you’re reading this book, there’s probably a good chance that you’ve heard of Bulma.
Bulma is a lightweight configurable CSS framework that’s based on Flexbox. Flexbox is a
relatively new CSS spec that has good browser support.

Bulma makes using Flexbox a breeze and handles all of the hard work of Flexbox for
you, so you don’t need to know any Flexbox to get started. However, knowledge of the CSS
spec is preferred.

This chapter covers Bulma at a high level to get you familiar with Bulma, its terms, and
its concepts.

How is Bulma unique?

Here are a few reasons why Bulma is different than other CSS frameworks:

» Modern: All of Bulma is based on CSS Flexbox.
+ 100% responsive: Bulma is designed to be both mobile and desktop friendly.
 Easy to learn: Most users get started within minutes.

+ Simple syntax: Bulma makes sure to use the minimal HTML required, so your code is
easy to read and write.

+ Customizable: With over 300 SASS variables, you can apply your own branding to
Bulma.

+ No JavaScript: Because Bulma is CSS-only, it integrates gracefully with any Java-
Script framework (Angular, VueJS, React, or just plain Vanilla JavaScript)

Simple columns system

Bulma is mostly famous for its straightforward columns architecture:

<div class="columns">
<div class="column">

17

18

CHAPTER 1: Understanding Bulma, terminology, and concepts

<!-- First column -->
</div>
<div class="column">
<!-- Second column -->
</div>
</div>

That’s it! It only takes two classes (columns for the container, and column for the child
items) to have a set of responsive columns. You don’t have to specify any dimensions: both
columns automatically take 50% of the width.

If you want a third column, you can just add another column:

<div class="columns">
<div class="column">
<!-- First column -->
</div>
<div class="column">
<!-- Second column -->

</div>
<div class="column">
<!-- Third column -->
</div>
</div>

Each column will now take up 33% of the width. No additional change is required. Con-
tinue this and add as many columns in as you want. Bulma will automatically adjust the
size for you.

Readability

Bulma is easy to learn because it’s easy to read. For example, a Bulma button simply uses
the class name button.

Save changes

To extend this button, Bulma provides modifier classes. They exist only as a way to pro-
vide the base button with alternative styles. To make this button use the primary turquoise

color and increase its size to large, just append the classes is-primary and is-large.

Save changes

Customizable

» «

Tip: You might want to stick with the “primary”, “secondary” naming conventions. This
will help give some meaning to your styles and it leaves it open for customization down the
road.

Customizable

Bulma has more than 300 variables, making almost any value in Bulma easy to override,
allowing you to define a very personalized setup.

By using SASS, you can set your own initial variables, like overriding the blue color val-
ue, or the primary font family, or even the various responsive breakpoints.

// 1. Import the initial variables
@import "../sass/utilities/initial-variables"
@import "../sass/utilities/functions"

// 2. Set your own initial variables

// Update blue
$blue: #72doeb

// Add pink and its invert

$pink: #ffb3b3
$pink-invert: #fff

// Add a serif family
$family-serif: "Merriweather", "Georgia", serif

// 3. Set the derived variables

// Use the new pink as the primary color
Sprimary: $pink

Sprimary-invert: $pink-invert

// Use the existing orange as the danger color
$danger: $orange

// Use the new serif family
$family-primary: $Sfamily-serif

// 4. Import the rest of Bulma
@import "../bulma"

Each Bulma component also comes with its own set of variables:

« box has its own shadow
+ columns have their own gap

« menu has its own background and foreground colors

19

20

CHAPTER 1: Understanding Bulma, terminology, and concepts

« button and input have colors for each of their states (hover, active, focus...)
» etc.

Each documentation page comes with the list of available variables to override.

Modular

Because Bulma is split into dozens of files, it’s easy to only import the parts you actually
need.

For example, some developers only want the columns. All they have to do is create a
custom SASS file with the following code:

@import "bulma/sass/utilities/_all"
@import "bulma/sass/grid/columns”

This will only import the columns and column CSS classes.

Columns

Flexbox is a one-dimensional grid system, providing you with either rows or columns. In
Bulma, you develop websites with columns in mind and wrap your columns inside a row or
wrapper. Here is the most basic functionality of Bulma.

You start off with a columns row.

<div class="columns">

</div>

Inside of the columns row, you can add a single column or as many as you like. Bulma

and Flexbox size your column depending on the number of columns added in a columns
row.

<div class="columns">
<div class="column">

</div>
</div>

In this example, the column is 100% of the browser width, because there is only one
column.

<div class="columns">
<div class="column">

Modifiers

</div>
<div class="column">

</div>
</div>

Now, each column is not 50%. This was explained briefly in the introduction, but it’s
worth mentioning again. The more columns you add, the smaller they become. If you have
three columns, each will be 33.33% wide, and with four columns, each column becomes
25% wide.

Modifiers

Modifiers are extra CSS classes that you add to your HTML in order to change its appear-

ance. For example, let’s look at a <button> and see how adding a modifier can change its
appearance.

<button class="button">I'm a button</button>

So far its pretty generic, with not much going on. However, let’s change it to a turquoise
color that Bulma ships with. To change the color to a “primary” color of your theme, use
the is-primary modifier.

<button class="button is-primary">I'm a button</button>

Now the button is turquoise. But let’s not stop there. You can continue adding modifier
classes to this button in order to change its appearance. Let’s make it a “ghost” button or a
hollow button with an outline.

<button class="button is-primary is-outlined">I'm a button</button>

You can also use the is-loading modifier class to show an animated loading GIF on
your button. This shows the user that a process is going on, like when you submit a form.

Note: All modifiers in Bulma start with is- or has-.

It’s considered best practice to leverage Bulma as much as possible before adding cus-
tom classes. If you overwrite the styles of something, continue using existing classes.

21

22

CHAPTER 1: Understanding Bulma, terminology, and concepts

Components

Bulma ships with components, which are pre-styled chunks of code that serve a certain
purpose. With components, you have to follow a specific HTML structure.
Reference Bulma’s documentation for more information and examples of components.
Here is an example of a card component:

<div class="card">
<header class="card-header">
<!-- header content -->
</header>

<div class="card-content"s
<div class="card-image" >
<!-- card image -->
</div>
</div>

<footer class="card-footer"s>
<!-- footer content -->
</footer>
</div>

Other components are: menu, dropdown, message, and modal.

Helper classes

Helper classes (a.k.a. utility classes) are modifiers that you can add to help structure your
content and/or your user interface. These should not be confused as traditional modifiers
that change the look of your component or element. These helper classes assist with user
interface positioning,.

Some examples of helper classes:

« 1s-marginless: Removes all margins.
+ is-unselectable: Prevents the text from being selectable.
« is-pulled-left: Moves the element to the left.

There are other types of helpers, such as “responsive helpers” and “typography helpers”
that assist with responsiveness and text respectively.

Summary

Summary

This chapter has introduced you to many Bulma concepts, but here are some further useful
Bulma resources:

« BulmaDocumentation
« BulmaBlog
« BulmaExpo

Next up, we’ll examine how to create and control forms in Bulma.

23

Creating and controlling forms with
Bulma

Let’s dive right into creating user interfaces with Bulma. In this chapter, you create a full
screen login form. This will give you a solid understanding of Bulma and give you the tools
you need to start integrating Bulma. Some things to take away from this chapter are: the
use of Bulma working with forms and why you leverage Bulma and when.

This login form that you’ll create will contain two form inputs (one for the email and one

for the password). This will be vertically and horizontally centered in a full screen <div>.
To see the full code of the example used in this book take a look at the book’s accompa-
nying GitHub page.

Template requirements

In order for the login page to work properly, you must follow the HTML5 web standard as
well as the following tags:

<!DOCTYPE html>

<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-awesome/
4.7.0/css/font-awesome.min.css" >

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/1libs/bulma/
0.6.1/css/bulma.min.css" >

All of these parts are combined in a valid HTML5 template:

<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8">
<meta name="viewport" content="width=device-width, initial-scale=1">
<title>Login</title>
<link rel="stylesheet" href="https://maxcdn.bootstrapcdn.com/font-
awesome/4.7.0/css/font-awesome.min.css" >

26

CHAPTER 2: Creating and controlling forms with Bulma

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/
bulma/0.6.1/css/bulma.min.css" >
</head>
<body>
<!-- The rest of your code will go here -->
</body>
</html>

While this page is valid, it is not showing anything yet, so let’s create our fill screen
<div>.
Bulma provides a hero class: it creates a large imposing banner that is useful to show-

case somethingin particular (in this case, the login form). This hero class comes with mod-

ifiers which, when combined with the base class, enable us to choose an alternative style
for the “hero.”

Inside the <body>, add the following snippet:

<section class="hero is-primary is-fullheight" >
<div class="hero-body" >
Login
</div>
</section>

In addition to the hero class, leverage two Bulma modifiers: is-primary and is-
fullheight. As stated above, modifiers “modify” the element that it’s attached to. In this
case, is-primary adds the default primary color (turquoise) and is-fullheight makes
the <section> increase the height of the <section> to 100% of the browser’s height.

Centered layout

You can now see that the whole viewport is turquoise, with "Login" written in white on
the left side. The hero-body ensures that this text is vertically centered.

Tip: If you don’t see a turquoise page, make sure you have included all of the different
assets, and that you are connected to the internet.

Centered layout

Before implementing the login box, be sure to first set up the layout. You want the box to
be both horizontally and vertically centered:

contatiner: Makes sure that the box will have a maximum width, and won’t reach
the edges of the page on wider viewports.

columns: Is a wrapper for the single column.

column: Will be horizontally centered.

box: With its white background and shadow allows its content to be readable on this
turquoise webpage.

<section class="hero is-primary is-fullheight" >
<div class="hero-body" >
<div class="container">
<div class="columns is-centered">
<div class="column">
<form class="box">
Login

27

28

CHAPTER 2: Creating and controlling forms with Bulma

</form>
</div>
</div>
</div>
</div>
</section>

Even though you are using is-centered, the content doesn’t look centered. It’s be-
cause by default, each Bulma column is automatically resized to fill the horizontal space.
Since you only have one column, it takes up 100% of the width.

Tip: Try to add a second column, and notice how each column now takes up 50% of the
horizontal space.

Since you don’t want the login box to be too wide, resize this column.

Resizing the single column

You only need a single column, but you want that column to be centered and responsive.
Luckily, Bulma provides modifiers that allow you to center columns, and specify a different
column size for each breakpoint.

To achieve this, append the following modifiers to the form wrapper. Each one serves a
specific purpose.

« 1s-5-tablet: Restricts the wrapper to be 5/12 columns wide on tablet (from
769px)

+ 1s-4-desktop: Restricts the wrapper to be 4/12 columns wide on desktop (from
1024px)

» 1s-3-widescreen: Restricts the wrapper to be 3/12 columns wide on widescreen
monitors (from 1216px)

Bulma is designed with mobile first in mind, so you don’t need to add a modifier to your
form wrapper. By default, it’s 100% of the mobile device’s width.

Append these modifiers to the column:

<div class="column is-5-tablet is-4-desktop is-3-widescreen" >
<form class="box">
Login
</form>
</div>

Implementingthe form’s content

Resize your browser to see it in action! The column takes up the whole width, up to
768px. If a higher value is reached, it resizes at each breakpoint to maintain a reasonable
width at all times.

You can now implement the form’s content.

Implementing the form’s content

The login form will be built with four fields:

« An email input

« A password input

+ A “Remember me” checkbox
+ A “Login” submit button

You will add a placeholder and a required attribute to some of the fields, which handle
form errors, so you can display to the user why they failed to login.

Logo

To reassure the user that they are indeed logging into the correct website, add a logo first.
Replace the “Login” text you’ve had so far with your first field:

<form class="box">
<div class="field has-text-centered" >

29

30

CHAPTER 2: Creating and controlling forms with Bulma

</div>
</form>

}JI

BLEEDING EDGE PRESS

Note: Make sure the images folderis alongside your login.html file.

images login.htmi

Bulma provides a field class that allows each form field to be spaced evenly. It also
comes with helper classes like has-text-centered to center text and inline elements.

Email input

For the first input, use a couple of useful Bulma classes:

« label: Class for all form labels, which turns it bold and adds some space at the bot-
tom.

« control: This class acts as a wrapper for the input, and will allow you to enhance it
with icons.

After the first field, use the following HTML.:

<div class="field">
<label class="1label">Email</label>
<div class="control">
<input class="input" type="email" placeholder="e.g. alexjohn-

Implementingthe form’s content

son@gmail.com" >

</div>
</div>
BLEEDING EDGE PRESS
Email

Although you are using an HTML5 email input, decorate the input with an email icon

from Font Awesome to hint at the content expected here.

In order to do that with Bulma, you must first add the has-icons-left modifier to the
control wrapper. This is a Bulma modifier that adds some padding to the left of the wrap-

per to make room for an icon.

<div class="control has-icons-left" >

You’ll want to add the envelope Font Awesome icon and add modifiers so the icon is

floated to the left and fits within the email input.

<l class="fa fa-envelope"></1>

« icon: A Bulma element that defines an icon.

« is-small: A modifier that makes the icon small. You can also use the is-large
modifier.

« is-left:Alignstheicon to the left of the form input.

The control wrapper now contains an input with an icon to the left.

<div class="control has-icons-left">
<input class="input" type="email" placeholder="e.g. alex@smith.com" re-

31

32

CHAPTER 2: Creating and controlling forms with Bulma

quired>

<i class="fa fa-envelope"></i>

</div>

Email

Note: Even if the icon loads after the page, the layout will not “jump” because Bulma
makes sure that the space defined by the icon is fixed.

Password input

The password input is very similar to the email icon, so you can simply duplicate the first
field, and modify a few parts:

« The labelis now “Password”
« The input type is password
« The input placeholder is ******%*%

« Theiconis fa-lock

<div class="field">
<label class="label">Password</label>
<div class="control has-icons-left">
<input class="input" type="password" placeholder="#*****¥***" required>
<span class="icon is-small is-left"s
<i class="fa fa-lock"></1i>

</div>
</div>

Password

The same Bulma classes apply to this field as well.

Implementingthe form’s content

Remember me checkbox

Add a simple checkbox for the “Remember me” feature. The <label> element allows you
to increase the click zone of the checkbox: the text “Remember me” is clickable as well.

You don’t need a control here since you aren’t using an icon.

<div class="field">
<label class="checkbox">
<input type="checkbox">
Remember me
</label>
</div>

Remember me

Login button

To complete your form, you only need a submit button. Bulma provides a button class
that can be used on:

+ anchortags <a>
+ button tags <button>
« input tags <input type="submit">

You’ll want to use the <button> element since it’s the most flexible and is a valid form

element.

<div class="field">
<button class="button is-success"s>
Login
</button>
</div>

33

34

CHAPTER 2: Creating and controlling forms with Bulma

Summary

The login page is now complete! Since you’re using the required attributes for your email
and password inputs, the form can only be submitted if these are valid.

BLEEDING EDSE PRESS

Email
Password

"Remember me

Next up, you can move on to the portion the user reaches after logging in: the admin
area.

Creating navigations and vertical
menus

In the previous chapter, you learned how to create and control HTML forms with Bulma by
creating a login form. Now it’s time to build the admin area.

This chapter goes in-depth on how to use Bulma’s navigation and menu components.
These components (especially the navigation) are essential when creating a website.
There’s no need to reinvent the wheel each time, so let Bulma do all the heavy lifting. Re-
member, you can always modify Bulma’s variables and adjust the user interface.

Note: To see the full code of the example used in this book take a look at the book’s
accompanying GitHub page.

In this example, it’s safe to assume that the “user” is able to login correctly. Once “log-
ged” in, an admin area should be displayed. The basic structure of the admin area is as
follows:

« Dashboard
« Books
X Book
« Customers
Customer
+ Orders
X Order

While each page will have its own specific content, some parts will be common across
all templates. This includes the navbar, menu to the left, and the main content area to the
right.

The first template you design is the Books template. Simply duplicate the login.html
file, rename it to books . html, and remove everything inside the <body> so you only have
the Doctype, the <html> tags, and the <head>.

35

36

CHAPTER 3: Creating navigations and vertical menus

Creating the navigation bar

Bulma comes with a flexible responsive navbar. You will use it to display a few elements:

« Company’s logo, which will act as a home link

Navigation’s mobile burgericon

Company’s tagline
Users name

Dropdown menu with a few items: link to the user profile, a button to report a bug,
and a link to sign out

<nav class="navbar has-shadow">
<div class="navbar-brand">
<!-- Logo, tagline, and navbar-burger -->
</div>

<div class="navbar-menu" >
<!-- User name, dropdown menu -->
</div>
</nav>

The navigation’s branding

In the navigation bar, you’ll want to display the logo of the company. You want this visible
at all times across all devices. There’s no need to write any custom CSS. As you’ve probably
guessed by now, you can use Bulma with component classes.

The navbar-brand lives on the left side of the navbar. It’s always visible and can con-
tain any number of navbar-item(s). It also holds the Bulma navbar-burger, which is
used to toggle the navbar -menu.

For now, just add the logo logo.png and the tagline.

<div class="navbar-brand"s>

</div>

o BLeEEDING EDGE PRESS

Creating the navigation bar

You don’t need to specify the image dimensions, since Bulma makes sure that any
 elementresiding in the navbar -brand will fit.

A navigation bar isn’t very useful without any links or a way to access links. To do this,
create three tags. Each tag will be a single line in the hamburger icon. If
you try clicking on this now, it won’t animate or do anything. To handle this, add the
navbar-burger component class. This adds the styles needed to render a hamburger
icon.

Let’s add the navbar-burger, which is only displayed until the desktop breakpoint is
reached (1024px):

<div class="navbar-brand" >

<div class="navbar-burger"s

</div>
</div>

4 BLEEDING EDGE PRESS

Now that the left part of the navbar brand is done, you can implement the right part.

The navigation’s menu

Bulma’s navbar-menu contains all of the other parts of your navbar. This part is visible
when toggling the navbar-burger. The navbar-menu is hidden by default, however, it
can be displayed by adding the is-active modifier.

On the desktop and above, the navbar-menu is always visible, and fills up the remain-

ing space left next to the navbar-brand.
The navbar menu itself is split into two parts:

» navbar-start: On the left (next to the navbar-brand)

« navbar-end: On the right

The left side is a good location for a tagline. Add this code after the navbar-brand,
within the navbar:

37

38

CHAPTER 3: Creating navigations and vertical menus

<div class="navbar-menu">
<div class="navbar-start"s
<div class="navbar-item" >
<small>Publishing at the speed of technology </small>
</div>
</div>
</div>

Publishing at the speed of technology

If you resize your browser, you’ll notice that the tagline will only show up after you reach
1024px in viewport width.

The Navigation’s dropdown menu

Within the navbar-menu, as a sibling of navbar-start, you can now add the navbar -
end, which will hold your dropdown menu.

<div class="navbar-end">

</div>

The navbar-end, should contain a dropdown menu when clicking on the navigation
link. In this case, the navigation link is going to be the user, “Alex Johnson.” You’ll want a
dropdown menu to appear when hovering over the user’s name.

Since “Alex Johnson” is a link in the navigation, Bulma’s navbar - item class is a perfect
fit for this because it “defines” an item in the navbar. This item, as mentioned before, also

displays a dropdown menu nested within it. You can append the has-dropdown modifier.
This modifier hides the nested navbar-dropdown element unless hovered on.

<div class="navbar-end">
<div class="navbar-item has-dropdown" >
<div class="navbar-1link">
Alex Johnson
</div>
<div class="navbar-dropdown" >
Dropdown content
</div>
</div>
</div>

Creating the navigation bar

Alex Johnson

« has-dropdown: Modifier to the navbar-item. Hides the nested navbar-dropdown
element.

« navbar-1link: This will always be visible, and will act as the dropdown trigger.

« navbar-dropdown: Is the dropdown menu container.

The navbar -dropdown is hidden by default. You can either display it on hover, or with a
CSS class toggle. For simplicity sake, it’s easier to use the hover state. Simply add the is-
hoverable modifier to the navbar-item:

<div class="navbar-item has-dropdown is-hoverable" >

Hover over the “Alex Johnson” navbar-1item to see the dropdown appear.

Alex Johnson

Dropdown content

The navbar-dropdown can also contain navbar-items. You will need three items,
each with a small icon.
Remove the text “Dropdown content” and add this content in it’s place:

<div class="navbar-dropdown" >

<div>

<i class="fa fa-user-circle-o"></i>

Profile
</div>

<div>

<i class="fa fa-bug"></i>

39

40

CHAPTER 3: Creating navigations and vertical menus

Report bug
</div>

<div>

<i class="fa fa-sign-out"></i>

Sign Out
</div>

</div>

Alex Johnson

@ Profile
3 Report bug

= Sign Out

You now have a responsive navbar with all of the content required for your administra-
tion pages.

o BLEEDING EDGE PRESS Pub 1 at the speed of technology Alex Johnson

The main section

All of the admin pages are going to be split in two columns. The left column will contain the
sidebar menu that will be common across all pages, while the right column’s content will
be specific to the current page.

Following the navbar, you can use Bulma’s section element to wrap your main con-
tent:

The sidebar menu

<section class="section">
<!-- The main content of the page -->
</section>

This provides the main content of the page some space, preventing it from reaching the
edges of the viewport. You can now define your two-column layout.

Within this section, add the following:

<div class="columns">
<div class="column is-4-tablet is-3-desktop is-2-widescreen" >
<!-- The sidebar -->
</div>
<div class="column">
<!-- The right part, specific to each page -->
</div>
</div>

Just like the login page, the first column will have a different size for each breakpoint.
And because Bulma columns are automatically resized, the second column will fill up the
remaining space. With the layout set up, you can now add the sidebar menu in the left col-
umn.

The sidebar menu

Much like the navigation in the previous section, Bulma’s menu component acts in a very
similar way. There are menu containers, menu- lists, and more.

Bulma provides a simple menu that can be used for any type of vertical navigation. In
this case, you define links to navigate between the top-level content types: the dashboard,
the books, the customers, and the orders.

This menu will live in the first column and will be to the left of the admin’s user inter-

face. To create a menu, create a <nav> element with the menu class.

<nav class="menu">

</nav>

You’ll obviously want to add some more content and possibly give it a label. The menu-
label class can be appended to any HTML element. This class, however, is most common-
ly used with things like paragraphs and headings.

Continuing the menu sidebar...

<pav class="menu">
<p class="menu-label">
Menu

41

CHAPTER 3: Creating navigations and vertical menus

</p>
</nav>

You’ll also want a list for your menu. This will contain useful links to the Dashboard,

Books, Customers, and Orders pages. The menu-1ist should be an unordered list with list
items. This is no different than creating a standard navigation bar for a website.

<ul class="menu-list">

<i class="fa fa-tachometer"s></i>

Dashboard

<i class="fa fa-book"></i>

Books

<i class="fa fa-address-book"></i>

Customers

</1i>

<i class="fa fa-file-text-o0"></1>

Orders

</1i>

Your final menu should resemble something close to this:

<nav class="menu">
<p class="menu-label" >
Menu
</p>
<ul class="menu-list">

The sidebar menu

<l class="fa fa-tachometer"s></i>

Dashboard

<l class="fa fa-book"></i>

Books

<l class="fa fa-address-book"></i>

Customers

<i class="fa fa-file-text-o0"></i>

Orders

</nav>

This will populate the left column with a vertical menu that will take up about one
fourth of the page’s width.

43

44

CHAPTER 3: Creating navigations and vertical menus

MENU
& Dashboard
B3 Customers

[Z) Orders

Since this is the books.html file, make sure to add the is-active modifier class on
the appropriate menu item.

Summary

This template has all of the common parts for the site so far (the navbar and the section
with the sidebar menu). Next, you will focus on the Books’ specific content.

Creating responsive grids with
common components

In this chapter, you will learn how to easily create responsive grids with Bulma. You will
also learn how to add Bulma components to your user interface for common things like
boxes, lists, and media groups, and learn how to create pagination with Bulma. This is all
useful for creating large scale websites, like eCommerce websites.

Note: To see the full code of the example used in this book take a look at the book’s
accompanying GitHub page.

At this point, you already have your Bulma menu created in the left column. It’s time to
create a responsive grid that is the body of the right column. This same patten will be ap-
plied and repeated for the three content pages (books, customers, and orders). The user
interface will follow the CRUD (Create Read Update Delete) pattern. For each type of con-
tent, you need the following Ul components:

« Alist to view all items

« An empty form to create an item

+ A populated form to update an item previously created
« A button to delete an item

For the books . html template, the right column of the page will contain:

 Title

+ Horizontal toolbar

+ List of book items

« Pagination component

The toolbar

In the second column of the layout (the one with column only), let’s begin by creating the
meat of the body. You’ll want to first add a <h1> and give it a class of title. Bulma’s ti-
tle class will make the text larger and bolder.

45

46

CHAPTER 4: Creating responsive grids with common components

The toolbar is going to be horizontal and provides some extra options for users. To keep

certain components inline with each other on the same level you should use the level
component class.

Similarities between navbar and level

The level component acts very much like the navbar and its items. You should refrain

from using the navbar classes in this case since your options are to primarily use a naviga-
tion bar.

Bulma’s Level follows a simple structure:

<nav class="level">

<div class="level-left">

<div class="level-item">
</div>

</div>
<div class="level-left">

<div class="level-item" >

</div>
</div>
</div><!/-- level -->
Creating the toolbar

At this point, you should be familiar with navbar and by extension levels. There are,
however, a few modifier classes that this book hasn’t gone over yet.

subtitle: Asubtitle. Has a different weight than title.
is-5: Amodifier for titles. Gives similar styles of a <h5>.

is-success: A modifier that gives the element the “success” color. By default, “suc-
cess” modifiers are green.

is-hidden-tablet-only: Hides an element of tablet devices only.

select: Much like control is used for inputs, select is used on <select> tags for
consistentstyling.

Your final HTML for the Level bar should resemble something like this:

<h1l class="title">Books</h1>

<nav class="level">

<div class="level-left">

<div class="level-item">
<p class="subtitle is-5">
6 books

Thetoolbar

</p>
</div>

<p class="level-item">
New

</p>

<div class="level-item is-hidden-tablet-only" >
<div class="field has-addons">
<p class="control">
<input class="input" type="text" placeholder="Book name, ISBN..">
</p>
<p class="control">
<button class="button">
Search
</button>
</p>
</div>
</div>
</div>

<div class="level-right">
<div class="level-item">
Order by
</div>
<div class="level-item">
<div class="select">
<select>
<option>Publish date</option>
<option>Price</option>
<option>Page count</option>
</select>
</div>
</div>
</div>
</nav>

This adds a bold “Books” title, and a horizontal toolbar with several elements:

« Bookcount

+ Green “New” button, that links to the page to create a new book
« Searchbox

+ Sorting dropdown

47

48

CHAPTER 4: Creating responsive grids with common components

Books

6 books

Note: To prevent the toolbar from overflowing, the search box is hidden on tablets only.
Thanks to the level class, all of the elements are vertically aligned and evenly spaced.

The books grid

To display all of the books sold by the publisher, you will define a two-dimensional grid of

Search

six book items. Each item will consist of:

The book cover

The name

The price

To create the grid of the six books, you'll need to first create your standard columns row
and give it six <div>s with the column class. Add an image as a placeholder for the book

item:

<div class="columns">
<div class="column">

<img src="1images/tensorflow.j

<div>
<div class="column">

<img src="1images/tensorflow.j

<div>
<div class="column">

<img src="images/tensorflow. j

<div>
<div class="column">

<img src="1images/tensorflow.j

<div>
<div class="column">

<img src="images/tensorflow. j

<div>
<div class="column">

<img src="images/tensorflow.j

<div>
</div>

A list of meta data (number of pages, ISBN...)
Links to edit and delete the book

width="80">
width="80">
width="80">
width="80">
width="80">
width="80">

Publish date

The bookitem

Refresh this page in your browser of choice. At this point, you should see six book covers
evenly spaced out in a single columns row. However, they are much too small and should
probably be larger. Use modifiers to modify these columns to be different sizes on different
devices.

To optimize the space, the number of columns will vary according to the viewport width:

« On mobile and tablet, there will be only 1 column
« On desktop, you will have 2 columns
« On widescreen, you will have 3 columns

<div class="column is-12-tablet is-6-desktop is-4-widescreen" >

</div>

If you refresh your browser window now, you’ll notice something very odd. Each of
these book covers are the correct size depending on which device you’re on, but...they’re
not “wrapping” to the next line as you might expect. That is because having a columns row
will always automatically adjust the column width as seen before. Their modifier classes,
however, are directly overriding and modifying the column width. Fortunately, there’s a
Bulma class that fixes this, so there’s no need to create custom CSS.

That modifier class is is-multiline. Forgetting this class can be a common mistake
that developers make when using Bulma for the first time. Please note that if you directly
modify the width of a column and want them to wrap, you need the is-multiline class.

The book item

The Bulma box comes with a border and a shadow, which allows it to be visually distinct
and separated. This is for a list of repeated items.

<article class="box">
<div class="media">
<aside class="media-left">

</aside>

<div class="media-content">

<p class="title is-5 is-spaced is-marginless" >

TensorFlow For Machine Intelligence

</p>

<p class="subtitle is-marginless">
$22.99

</p>

49

50

CHAPTER 4: Creating responsive grids with common components

<div class="content is-small">
270 pages

ISBN: 9781939902351

Edit
-
<a>Delete
</p>
</div>
</div>
</article>

You'll notice that this HTML snippet contains a few more classes that this book hasn’t

gone over yet. One of these classes is media, which is repeatable, with nested content like
book information or comments on a blog post.

« media: Wrapper for nested, repeatable content.

« media-left: Much like, navbar-left, thisis used for the left side of the media
component.

« media-content: A wrapper for all the media’s content.
« is-marginless: Removes any margin.

« content: Used for any textual content.

ewsoneiow | 1 €NSOrFlow For Machine
et Intelligence
$22.99

-1 270 pages
ISBN: 9781939902351

L:Jl‘. L_A L= ,‘:L.‘:

The media component is a very simple, but extremely useful Ul pattern: it allows you to
combine a small media element (like an image or an icon) with a larger bit of content side-
by-side. By juxtaposing the book cover with its description, the book item is visually bal-
anced, and optimizes the space.

The title/subtitle combination emphasizes the book’s most important information
(name and price), while the content class is Bulma’s default basic container for any longer
piece of text.

Tip: For the image to appear, make sure to have the images folder alongside your

books.html file.

v.‘l

images Books.html

Add the five other books and their respective images:

» “Dockerin Production” > docker. jpg
« “Developing a Gulp.js Edge” -> gulp. jpg
« “Leamning Swift” -> swift. jpg

The book item

+ “Choosing a JavaScript Framework” -> js-framework. jpg

+ “Deconstructing Google Cardboard Apps” -> google-cardboard. jpg

rmspseiow | T@NsorFlow For Machine T |

e | Intelligence

N | 32299 ass
H[!_ 270 pages -a

=== ISBN- 97R1939002351

Eoit

o Developing a Gulp.js Edge
e $22.99
(A A
"o | 138 pages
'l _rﬂ > ISBN: 9781939902146
-. Edit - Delels
swenicew | Choosing a JavaScript cecorTRUCTI
= Framework o
@ 2| $19.99 00
w 26 pages — —
ISBN: 9721639002002 ——l e
Edit - Deles

Now that you have six items in your grid, resize your browser to see how the layout goes

from one column to two and then three.

Docker in Production
$22 99

156 pages
ISEN: 9781530902184

Edil + Delete

Learning Swift
$22.99
332 pages
ISBEN: 9781939202115

Edil « Delzte

Deconstructing Google

Cardboard Apps
$22.99

178 pages
ISBN: 9781639602248

Edil » Dalete

CHAPTER 4: Creating responsive grids with common components
Pagination

Because the number of books is dynamic, it is highly probable that you will end up with
more than six books (or twelve if you decide to show twelve books per page). To prepare
for that case, you can use Bulma’s responsive pagination component, which will allow your
interface to handle any number of books.

After the columns is-multiline element, add this snippet:

<nav class="pagination">
Previous
Next page
<ul class="pagination-list">

1

…

45

46

47

…

<3 class="pagination-link" >86

</nav>

pagination: Wrapper for pagination.

pagination-previous and pagination-next: Used for incremental navigation.

pagination-link: Each linkin our pagination, which allows us to jump to different
pages.
pagination-ellipsis: Adds ellipsis for range separation.

is-current: Highlights the current page.

Summary

Previous Next page

Depending on the number of pages required by your Ul, you can:

« Add or remove pagination-ellipsis elements

+ Enable or disable the “Previous” and “Next” buttons by adding the disabled at-

tribute

F Biegbise Edxcg Pegss Publshing

Books

& Doshboard

B Customers
"..""l.ln

[#) Orders

Summary

11 the speed of technology
.

Search

TensorFlow For Machine
Intelligence

$2299

270 pages

158N ATRIRTE8G . AN

Developing a Gulp.js Edge
$2299

134 ppges

Choosing a JavaScript
Framework

$19.99

RE peges

a6

Alex Johnson

Order by Publish date

Docker In Production

Leaming Swift
$22.99
142 poges
ISAN S7219268021%

(8] niew

Deconstructing Google
Cardboard Apps
$22.99

128 pagus

0781939903245

You have now completed the page that displays the list of books. Next, let’s focus on the
pages that will handle a single book.

Creating breadcrumbs and file
upload fields

Continuing with what you’ve learned so far, let’s create breadcrumbs and fields. This chap-
ter is also going to build off of the previous chapters by creating the single book detail pa-
ges.

Note: To see the full code of the example used in this book take a look at the book’s
accompanying GitHub page.

There are two cases where a single book template will be used: to create a new book
(new-book.html), and to edit an existing one (edit-book.html), since the delete action
is simply a link in the list of books.

Duplicate the books . html file, rename it to new-book.html, and remove everythingin
the right column (title, level, columns is-multiline, and pagination), so only the
navbar and the left sidebar menu remain.

New book detail template

The new book detail template is comprised of two components:

+ A breadcrumb, to both tell the user where they are, and allow them to navigate back
+ Aform, to allow the user to input a book’s information

Breadcrumb

The new-book.html page is reached by clicking on the green “New” button on

books.html, and can thus be considered a subpage of the latter. To highlight this hierar-
chy to the user, you can display a Bulma breadcrumb:

<nav class="breadcrumb" >

Books

55

56

CHAPTER 5: Creating breadcrumbs and file upload fields

<li class="1is-active">
New book

</nav>

Books |/ New book

The active item is black and not clickable, since it’s the current page.

The book form

Each book will have the following fields:

. title
* price

page count
ISBN
coverimage

Like the login page, the creation of a new book requires an HTML <form> that will use
the following Bulma elements:

+ label
textinput

textarea

fileupload

buttons

Right after the breadcrumb, create the form and add the first field:

<form>
<div class="field">
<div class="field">
<label class="label">Title</label>
<div class="control">
<input class="input is-large" type="text" placeholder="e.g. Design-
ing with Bulma" requireds
</div>
</div>
</div>
</form>

New book detail template

Title

Since the title is the most important information of a book, it uses a large input, thanks
to the modifier class is-large. This input holds no value, since it’s a creation form, and is

required.
The following three fields are for the price, the page count, and the ISBN. Since these all
hold relatively short values, they can be displayed as three columns on the desktop. Within

the form, after the first field, add the following:

<div class="columns is-desktop">
<div class="column">
<label class="label">Price</label>
<div class="control has-icons-left">
<input class="input" type="number" placeholder="e.g. 22.99" required>

<i class="fa fa-dollar"s></1>

</div>
</div>

<div class="column">
<label class="1label">Pages</label>
<div class="control">
<input class="input" type="number" placeholder="e.g. 270" required>
</div>
</div>

<div class="column">
<label class="label">ISBN</label>
<div class="control">
<input class="input" type="text" placeholder="e.g. 9781939902351" re-
quired>
</div>
</div>
</div>

For this columns row, the modifier is-desktop is used to show the columns row only
on desktop devices. This will hide the row on mobile and tablet sizes.

57

CHAPTER 5: Creating breadcrumbs and file upload fields

Price Pages ISEN

To specify the price currency, the control has a has-icons-left modifier, and con-
tains an additional Bulma icon, which wraps the fa-dollar Font Awesome icon.

For the cover image, Bulma provides a file input, that holds an icon, a label, and an op-
tional file name. After the columns, add another field:

<div class="field">
<label class="label">Cover image</label>
<div class="control">
<div class="file has-name">
<label class="file-label">
<input class="file-input" type="file">

<i class="fa fa-upload"></i>

Choose a file..

No file chosen

</label>
</div>
</div>
</div>

field: Used on form fields to keep spacing consistent.

file: Aninteractive wrapper of a file input. This is the container.

file-label: The actual interactive and clickable part of the element.

file-1input: The nativefile input, hidden for styling purposes.

file-cta: The upload call-to-action.

file-1icon: Optional uploadicon.

file-name: Container forthe chosen file name.

Edit the book template

Cover image

& Choose 3 file No file chosen

The file-name element can be updated when the user chooses a file from their com-
puter, but hasn’t uploaded it yet.

Lastly, the form needs a couple of buttons: one to create the book (if all fields are popu-
lated), and one to cancel the creation. Bulma provides a button class that allows you to
easily display a list of buttons:

<div class="field">
<div class="buttons">
<button class="button is-medium is-success" >Create book</button>
<button class="button is-medium is-light" >Cancel</button>

</div>
</div>
Cancel
Edit the book template

The page to edit a book is almost identical to the one where you create a book. The only
differences are:

The breadcrumb says “Edit book”
All of the HTML value attributes are already populated

The coverimage isdisplayed

The green button label says “Save changes” instead of “Create book”

As a result, you can simply duplicate the new-book.html file, rename it to edit-
book.html, and apply a few changes.
In the breadcrumb, change “New book” to “Edit book”:

<nav class="breadcrumb" >

Books
</11>

59

60

CHAPTER 5: Creating breadcrumbs and file upload fields

<li class="is-active">
Edit book
</1i>

</nav>

Books [/ Edit book

The first input’s value attribute should hold a book title:

<input class="input is-large" type="text" placeholder="e.g. Designing with
Bulma" value="TensorFlow For Machine Intelligence" required>

Title

TensorFlow For Machine Intelligence

The following three inputs should have a value as well. Find each input, and add a val-
ue:

<input class="input" type="number" placeholder="e.g. 22.99" value="22.99" re-
quired>

<input class="input" type="number" placeholder="e.g. 270" value="270" re-
quired>

<input class="input" type="text" placeholder="e.g. 9781939902351" val-
ue="9781939902351" required>

Price Pages ISBN

22.99 270 9781939902351

Since a cover image has already been uploaded at this point, it has to be displayed. You

can simply use another control between the “Cover image” label, and the file input con-
trol:

<div class="field">
<label class="label">Cover image</label>
<div class="control">

Edit the book template

</div>
<div class="control">
<div class="file has-name">
<!-- etc. -->

Cover image

TENSORFLOW
FOR MACHINE
INTELLIGENCE

X Choose a file... No file chosen

This Ul prevents the user from deleting the cover image without uploading a new one.

61

62

CHAPTER 5: Creating breadcrumbs and file upload fields

" BLegbine Evee Perss Publshing at the speed of technology

MENU

Books / Edit book

& Doshboard

Title

B Customers TensorFlow For Machine Intelligence

@ Crders Price Pages ISBN
2299 270 9781939002351

Cover image

e
TENSORFLOW
FOR MACHINE
INTELLIGENCE

[pe—————
[

& Chooss a fils.., Nao file chosen

Create book R

Summary

The Book templates are done! You can now focus on the Customers content type.

Alex Johnson

Creating tables and selecting
dropdowns

Like previous chapters, this one will be continuing the project that you’ve been building.
This chapter will highlight tables, illustrating how you can easily create tables with the

classes provided.
Note: To see the full code of the example used in this book take a look at the book’s

accompanying GitHub page.

After having implemented the three Book templates required for basic CRUD functional-
ity, you can now focus on the next content type: Customers. The functionalities will actual-
ly be identical: creating customers, editing/viewing them, and eventually deleting them.
The differences will be in the fields required for a customer, and the way the list of custom-
ers will be displayed: instead of using a grid of boxes, the customers will be displayed in a

Bulma <table>.

The list of customers

Duplicate books.html, rename it to customers.html, and perform a few small changes:

« Move theis-active classin the sidebar menu from “Books” to “Customers”
o Rename the title from “Books” to “Customers”
+ Remove the grid of book items

63

CHAPTER 6: Creating tables and selecting dropdowns

o Birzpine Exoe Press Publisting ot the speed of technclogy Alex Johnson
Customers
& Deashboard
B8 Books 6 books BUEEE Searcr Order by Publish date

OECNEE = .m-

3 Orders

As you can see, this page still needs to be updated quite a bit.

Updating the toolbar

The toolbar residing in the Level component only requires some text replacements:

¢ “6 books” is now “3 customers”

« The “New” button targetis now new-customer.html
« The “Book name, ISBN...” placeholder is now “Name, email...”

3 customers BREN Search

The level-right will now contain toggle elements instead of a dropdown. Replace it
with the following:

<div class="level-right">
<p class="level-item">All</p>
<p class="level-item"><as>With orders</p>
<p class="level-item" ><asWithout orders</p>
</div>

All With orders Without orders

By simply having one and two <a> elements, you have a Ul for very basic tog-
gle controls.

The list of customers

Implementing the table of customers

To keep the Ul simple, each customer will have:

« Aname

« An email address

+ An address with street name, postcode, city, and country
+ Alist oforders

Since there is no image to display, let’s use a Bulma <table> here to have a higher den-
sity of information.

Between the level and the pagination, add the following:

<table class="table is-hoverable is-fullwidth" >
<thead>
<tr>
<th class="is-narrow">
<input type="checkbox">
</th>
<th>Name</th>
<th>Email</th>
<th>Country</th>
<th>0rders</th>
<th>Actions</th>
</tr>
</thead>
<tfoot>
<tr>
<th class="is-narrow">
<input type="checkbox">
</th>
<th>Name</th>
<th>Email</th>
<th>Country</th>
<th>0rders</th>
<th>Actions</th>
</tr>
</tfoot>
<tbody>
<tr>
<td>
<input type="checkbox">
</td>
<td>

John Miller

</td>

65

CHAPTER 6: Creating tables and selecting dropdowns

<td><code>johnmiller@gmail.com</code></td>
<td>United States</td>
<td>
2
</td>
<td>
<div class="buttons">
Edit
<a class="button is-small"sDelete
</div>
</td>
</tr>
</tbody>
</table>

Name Email Country Orders Actions
John Miller johnmillerfgmail .com United States y Edit Delete

Name Email Country Orders Actions

Note: Since the address can be very long, the country is sufficient for the list view.
The table uses two modifiers classes:

+ is-hoverable: highlights the whole row when hovered

o 1s-fullwidth: forces the table to use the whole width available

The cell containing the checkbox is using the is-narrow Bulma modifier to make sure it
only uses the minimum width required. This checkbox is often seen in tables for bulk edit
functionalities.

Add two other rows, with other names, email addresses, countries, and a number of or-
ders.

Name Email Country Orders Actions
John Miller jahnm erégmail.com United States . Edit Delste
Samantha Rogers gsamrogersfgmail.com United Kingdom 6 Edit Delete
Paul Jacques paul.jacquesfigmail . com Canada 2 Edit Deiste
Name Email Country Orders Actions

The customers template is ready. You can now focus on the single customer templates.

New customer template

New customer template

The new customer template has the same structure as the new book one: a breadcrumb
and a list of form fields.

Duplicate the new-book.html file, and rename it to new-customer.html. In the side-
bar menu, move the is-active class to the “Customers” item. In the right column’s bread-
crumb, change any instance of “book” to “customer.”

You can now focus on the <form>. Remove all fields, except the first large input, and the
last set of buttons.

o Biezpise Evor Press Publisting a1 the speed of technclogy Alex Johnson
Customer New customer
& Dashhoard
Title
B Books

Cancel

The first field can simply be repurposed by changing the label and placeholder.

<div class="field">
<div class="field">
<label class="1label">Full name</label>
<div class="control">
<input class="input is-large" type="text" placeholder="e.g. Alex
Smith" requireds
</div>
</div>
</div>

Full name

The second field is an email one, with an envelope icon.

<div class="field">
<label class="label">Email</label>
<div class="control has-icons-left">
<input class="input" type="email" placeholder="e.g. alexjohn-
son@gmail.com" requireds

67

68

CHAPTER 6: Creating tables and selecting dropdowns

<i class="fa fa-envelope"></i>

</div>
</div>

Email

The third and fourth fields are for the customer’s address. Only the first line is required.
Note how the second line doesn’t require a label.

<div class="field">
<label class="1label">Address</label>
<div class="control">
<input class="input" type="text" placeholder="Number and street name" re-
quired>
</div>
</div>

<div class="field">
<div class="control">
<input class="input" type="text" placeholder="Second address line (op-
tional)">
</div>
</div>

Address

For the postcode/city/country combination, save space by using a set of Bulma col-
umns.

<div class="columns is-multiline">
<div class="column is-12-tablet is-6-tablet is-4-desktop" >
<label class="label">Postcode / Zipcode</label>
<div class="control">
<input class="input" type="text" placeholder="e.g. 67202" required>
</div>
</div>

New customer template

<div class="column is-12-tablet is-6-tablet is-4-desktop" >
<label class="label">City</label>
<div class="control">
<input class="input" type="text" placeholder="e.g. San Francisco" re-
quired>
</div>
</div>

<div class="column is-12-tablet is-6-tablet is-4-desktop" >
<label class="1label">Country</label>
<div class="control">
<div class="select">
<select>
<option>-- Choose a country --</option>
<option>Canada</option>
<option>United Kingdom</option>
<option>United States</option>
</select>
</div>
</div>
</div>
</div>

Postcode | Zipcode City Country

-- Choose a country --

The last set of buttons only needs to be renamed.

<div class="field">
<div class="buttons">
<button class="button is-medium is-success" >Create customer</button>
<button class="button is-medium is-light" >Cancel</button>
</div>
</div>

Create customer Cancel

The whole page is ready:

69

70

CHAPTER 6: Creating tables and selecting dropdowns

o BlLrsbise Exog Perss Pubifahing at the speed of technology Alax John

CUstomers New customer

& Doshboard
P : Full name
B Customers
3 Crders Emall
Address
Postcode [Zipcode City Country

-- ChoGse a country --

Cancel

You now have a “Create customer” form, that can be re-used for the “Edit customer”
template.

Edit customer template

As with the edit-book.html template, the “Edit customer” is simply the “New customer”
template, but populated with values.

Duplicate the new-customer.html file, rename it to edit-customer.html, and apply
a few changes:

Put “Edit customer” in the breadcrumb

Add a valueforeach required field

Choose acountry

Rename the green button to “Save changes”

Summary

Customers [/ Edit customer
Full name

John Miller
Email

ohnmiller@gmail.com
Address

55 Long Bridge road

Postcode | Zipcode City Country

78170 Los Angeles United States

Cancel

For the country selection, simply add the selected HTML attribute:

<select>
<option>-- Choose a country --</option>
<option>Canada</option>
<option>United Kingdom</option>
<option selected>United States</option>
</[select>

Summary

You have now learned how to make basic tables, and in the next chapter you will learn how
to make more advanced tables.

71

Creating more tables and selecting
dropdowns

This chapter is going to continue using tables in dropdowns, with a focus on more ad-
vanced cases. At this point, if you’ve followed along, you have created the majority of the
application. There are, however, a few more things to do.

Note: To see the full code of the example used in this book take a look at the book’s
accompanying GitHub page.

The Order content type connects a Customer to one or multiple Books. Each Order will
have:

o« Anid number

An associated customer

A date

A list of books

A status, one of “In progress”, “Successful”, or “Failed”

A total cost

List of orders

To display the list of orders, you can use a similar table to the customers table.
Duplicate customers.html, renameit orders.html, and perform a few changes:

« Move theis-active classinthe sidebar menu
Change the title to “Orders”
Write “2 orders” instead of “3 customers”

Remove the “New” button

Change the search placeholder to “Order #, customer...”

73

CHAPTER 7: Creating more tables and selecting dropdowns

Orders

2 orders Search All With orders Without arde

The green “New” button is removed because the Ul assumes that an order is automati-
cally created when a customer purchases a book on the publisher’s website.
The table only requires new columns:

« order #

e customer
 date

« number of books
« status

« total cost

<table class="table is-hoverable is-fullwidth" s>

<thead>
<tr>
<th>Order #</th>
<th>Customer</th>
<th>Date</th>
<th>Books</th>
<th>Status</th>
<th class="has-text-right" >Total</th>
</tr>
</thead>
<tfoot>
<tr>
<th>0rder #</th>
<th>Customer</th>
<th>Date</th>
<th>Books</th>
<th>Status</th>
<th class="has-text-right" >Total</th>
</tr>
</tfoot>
<tbody>
<tr>
<td>
787352
</td>
<td>

John Miller
</td>

List of orders

<td>Nov 18, 17:38</td>
<td>2</td>
<td>
In progress
</td>
<td class="has-text-right" >$56.98</td>
</tr>
</tbody>
</table>

+ has-text-right:Aligns the textin the element to the right.

+ tag: A Bulma component. Renders a small colored element to help relay informa-
tion.

« 1s-warning: A modifier used to assign the “warning” color. In this case, the default
yellow color.

Order # Customer Date Books Status Total
787352 John Miller Nov 18, 17:38 2 IN pFOQIOss $56.98
Order # Customer Date Books Status Total

The order status uses a Bulma tag. Each status can have its own modifier:

+ In progress ->is-warning
« Successful ->1s-success

« Failed > is-danger

Add another order, with different data. Your template is now complete.

o BiLozpine Escr Presy Pubkshing at the speed of technclogy Alex Johnson
Orders
& Dazhbhosrd
8 Books 2 orders Searc! Al With orders Withaout orders
B Customers Order # Customer Date Books Status Total
787352 hn Millef Nov 18, 17:38 2 1 jrogross $56.98
289050 hn Miler Nov 18, 11:45 1 e $21.99
Order # Customer Date Books Status Total

m ‘.v :

76

CHAPTER 7: Creating more tables and selecting dropdowns

Edit Order

Duplicate orders.html, rename it to edit-order.html, and remove everything in the
right hand column.

o BiLizpine Exoe Press Pubtshing at the speed of technclogy Alex Johnson

& Dashboard
B Books

D Customer

(aow

Each order comes with a unique auto-generated id that can be displayed as the main
title, just below the breadcrumb.

<nav class="breadcrumb" >

0rders

<li class="is-active">
<a>Edit order
</1i>

</nav>

<h1l class="subtitle is-3">
Order 787352
</h1>

Orders | Edit order

787352

Edit Order

Since an order connects a customer to a list of books, the logical way to display this re-
lationship is with two columns. Following the subtitle, add this snippet:

<div class="columns is-desktop">
<div class="column is-4-desktop is-3-widescreen" >
<!-- Left column, for order information and customer -->
</div>
<div class="column">
<!-- Right column, for the list of books -->
</div>
</div>

Order information

Most of the information displayed here is read-only. The only changeable element is the
order status.
In the left column, add this code:

<p class="heading">
Date
</p>
<p class="content">
Nov 18, 17:38

</p>

<p class="heading">
Status
</p>
<div class="buttons">
<button class="button is-small is-warning" >In progress</button>
<button class="button is-small is-success is-outlined" >Successful</button>
<button class="button is-small is-danger is-outlined" >Failed</button>
</div>

<p class="heading">
Customer

</p>
<p class="content">

John Miller

<code>johnmiller@gmail.com</code>

55 Long Bridge road

78170 Los Angeles

7

78

CHAPTER 7: Creating more tables and selecting dropdowns

United States
</p>

DATE
Nov 18, 17:38

STATUS

In progress Falled

CUSTOMER
John Miller

-

johnmillerégmail .com

55 Long Bridge road
/8170 Los Angeles
United States

The three buttons act as a mutually exclusive list, where the is-outlined items are
inactive, while the third one is selected.

The customer’s name has a link to its editing page, in case the user has to update the
customer’s address, for example, while viewing the order.

List of books

While the previous list of books (in books.html) was a grid of boxes, this list of books
chosen by the customer doesn’t need to be as detailed. As a matter of fact, since this list is
editable, a Bulma table is the best Ul choice here.

In the right column, add this snippet:

<p class="heading">
Books
</p>
<table class="table is-bordered is-fullwidth">
<thead>
<tr>
<th class="1is-narrow">Cover</th>
<th>Title</th>

<th class="has-text-right is-narrow" >Price</th
<th class="has-text-right is-narrow" >Amount</t

<th class="has-text-right is-narrow" >Total</th
</tr>
</thead>
<tfoot>
<tr>
<th colspan="5" class="has-text-right" >$42.98<
</tr>
</tfoot>
<tbody>
<tr>
<td>

</td>
<td>

TensorFlow For Machine Intelligence

</td>
<td class="has-text-right">
$22.99
</td>

<td class="has-text-right">
<input class="input is-small" type="number"
max="2">
</td>
<td class="has-text-right">
$22.99
</td>
</tr>
<tr>
<td>
<img src="images/js-framework.jpg" width="40
</td>
<td>

Choosing a JavaScript Framework

</td>
<td class="has-text-right">
$19.99
</td>
<td class="has-text-right">
<input class="input is-small" type="number"
max="2">

Edit Order

>
h>
>

/th>

value="1" maxlength="2"

Il>

value="1" maxlength="2"

79

80

CHAPTER 7: Creating more tables and selecting dropdowns

</td>
<td class="has-text-right">
$19.99
</td>
</tr>
</tbody>
</table>
BOOKS
Cover Title Price Amount Total
TensorFlow For Machine $22.99 1 $22.99
.4! Intelligence
E— Choosing a JavaScript $19.99 1 $19.99
®
A Framework
$42.98

Each row is a book purchased by the customer. It links to the book itself, and the
amount is editable.
The last row sums up the cost.

Row Form

There are many reasons why an order would need to be altered:

« A book ran out of stock

+ The customer wants the same book twice instead of once

+ The customer purchased the wrong book and wants to replace it
« Another book is added to the order

This is why the amount of books is editable, but the user needs a way to add a book that
is notin the list yet.

Add a small form as the last row in the tbody:

<tr>
<td colspan="5">

Summary

<div class="field is-grouped is-grouped-right" >
<div class="control">
<div class="select is-small">
<select>
<option>TensorFlow For Machine Intelligence </option>
<option>Docker in Production</option>
<option>Developing a Gulp.js Edge</option>
<option>Learning Swift</option>
<option>Choosing a JavaScript Framework </option>
<option>Deconstructing Google Cardboard Apps </option>
</select>
</div>
</div>
<div class="control">
<input class="input is-small" type="number" value="1" placehold-
er="Amount" maxlength="2" max="2">
</div>
<div class="control">
Add book
</div>
</div>
</td>
</tr>

TensorFlow For Machine Intelligence 1 Add book

For such a small horizontal form, a Bulma grouped field is used: it combines multiple
control elements on asingle line, thanks to the field is-grouped class combination.

Summary

The template is now complete.

81

82

CHAPTER 7: Creating more tables and selecting dropdowns

o Birzpiwe Esox Presy Pubiistiing at the speed of technclogy

Orders [Edit order
& Dashboard

&8 Books L I 787352

B Custamers —

UOOKS
. NG 17:2
STATUS = Tensorflow For Machine
I prugress ' | ! Intelligence
cCusTOMER " = =
e Choosing a JavaScript
s
John Miller g Framework

Juhemlllnr Sy 1l con
66 Long Bridge road
= - : TerasorFow For Machine imteligoncy
78170 Los Angeles

United States

It is time to revisit the top-level template: the Dashboard.

Price

§22.99

$10.90

Alex Johnson

Amount

Total

$22.99

$19.69

$42,98

Creating notifications and cards

At this point, you’ve explored a decent amount of what the Bulma framework has to offer.
There are a lot of component and modifier classes that you can choose from. We hope you
can see how you are able to create clean and structured user interfaces without custom CSS
code. That’s pretty cool. Of course, you can always modify Bulma with your own variables
or add your own custom styles.

There are a few aspects of Bulma that this book hasn’t explored yet: notifications
and cards. Let’s wrap up the application, and in later chapters of the book, you’ll learn
about using Bulma with Vanilla JavaScript as well as the Angular, Vue, and React frame-
works.

Note: To see the full code of the example used in this book take a look at the book’s
accompanying GitHub page.

The dashboard is the page the user lands on after logging in. It is usually the last page to
be designed because it acts as both a summary of and a shortcut to the other pages of the
admin area. Hence, why building the dashboard is the last step of this chapter; the idea is
to take content of the other pages, and present them in a succinct way.

The layout will be a grid of components, each of them related to one or multiple content
types:

« The mostimportant metrics
+ A list of the latest orders

« Themost popularbooks

« The most loyal customers

By using standard Bulma components, you can easily build a dashboard with a wide
range of use cases.

Title, time range

The dashboard’s main purpose is to provide a rapid overview within a certain timeframe,
so that the user can, at a glance, get a grasp of the state of the admin area.

83

84

CHAPTER 8: Creating notifications and cards

Duplicate books.html and remove everything in the main right column (from the
“Books” title to the pagination), so only the navbar at the top and the sidebar menu on the

left remain. Move the is-active class as well:

 BiLizpise Esoe Press Pubkshing ot the speed of technclogy Alex Johnson

® Dashboard

8 Books
O Customer

4 Orders

In this now empty right column, start with a Llevel component that will combine a title
and a select dropdown.

<div class="level">
<div class="level-left">
<h1l class="subtitle is-3">
<span class="has-text-grey-light" sHello Alex Johnson</
strong>
</h1>
</div>
<div class="level-right">
<div class="select">
<select>
<option>Today</option>
<option>Yesterday</option>
<option>This Week</option>
<option selected>This Month</option>
<option>This Year</option>
<option>All time</option>
</select>
</div>
</div>
</div>

« has-text-grey-1light: A helper class for typography. Assigns the text with a light
grey color.

Alex Johnson This Month

Important metrics

The title mentions the user’s name, which acts as a confirmation after the user has log-
gedin.

The right part has a select dropdown that allows the user to change the timeframe of
the dashboard they are viewing (similarly to most analytics dashboard).

Important metrics

The dashboard is a transient page: the user sees it, has a rapid look-around, and navigates
to the part that caught their attention. That is why the Ul should provide information al-
most instantly.

Bulma provides notification elements that come in various colors. Combined with
titles with a bigger font size, they are the perfect candidates for high-level metrics.

After the Llevel component, add these columns:

<div class="columns is-multiline">
<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-link has-text" >
<p class="title is-1">232</p>
<p class="subtitle is-4">0rders</p>
</div>
</div>

<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-info has-text" >
<p class="title is-1">%$7,648</p>
<p class="subtitle is-4">Revenue</p>
</div>
</div>

<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-primary has-text" >
<p class="title 1s-1">1,678</p>
<p class="subtitle is-4">Visitors</p>
</div>
</div>

<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-success has-text" >
<p class="title 1s-1">20,756</p>
<p class="subtitle is-4">Pageviews</p>
</div>
</div>
</div>

85

86

CHAPTER 8: Creating notifications and cards

232 $7,648

Orders Revenue

1,678 20,756

Visitors Pageviews

The columns are multiline so you can have one column on mobile and tablet, two on
desktop, and four on widescreen.

Latest orders

The orders is the content type that is most likely to be frequently populated, since they
come from the website. That is why it makes sense to show its latest state right away, be-
fore navigating to the “Orders” page.

Because the columns implemented for the high-level metrics are multiline, you can sim-
ply append more column items at the end.

Right after the last <div class="column 1is-12-tablet 1is-6-desktop is-3-
widescreen">, but still within the <div class="columns 1is-multiline">, add this
new column:

<div class="column is-12-tablet is-6-desktop is-4-fullhd" >
<div class="card">
<div class="card-content">
<h2 class="title is-4">
Latest orders
</h2>

<div class="level">
<div class="level-left">
<div>
<p class="title is-5 is-marginless" >
787352
</p>
<small>
Nov 18, 17:38 by John Miller
</small>
</div>
</div>

Latest orders

<div class="level-right">
<div class="has-text-right">
<p class="title is-5 is-marginless" >
$56.98
</p>
In progress
</div>
</div>
</div>

<a class="button is-link is-outlined" href="orders.html"sView all or-
ders
</div>
</div>
</div>

Latest orders

787352 $56.98
Nov 18, 17:38 by John Miller In progress

View all orders

The level component here allows you to save vertical space by displaying the order id,
date, and customer on the left, and push the total and status to the right.

Between the first Level and the “View all orders” button, add a couple of other orders
in this list, with different data:

87

88

CHAPTER 8: Creating notifications and cards

Latest orders

787352 $56.98

Nov 18, 17:38 by John Miller In progress

View all arders

Most popular books with cards

In this section you’ll be creating cards. Cards are a Bulma component that are great at con-
veying information in a smaller amount of space. Usually, cards have visual elements with
them, like an image or a video. Cards are very common and are especially common with
eCommerce websites. However, let’s create some cards with our in-progress book applica-
tion.

Basic structure of a card

<div class="card">
<div class="card-image">

<!-- image here -->
<div>
<div class="card-content"s
<!-- content here -->
<div>
</div>

For this example, you’ll be using Bulma’s media component for the card’s content. Let’s
move on.

The dashboard should contain items that are likely to change over time. The list of the
most popular books is one such item.

You can reuse the same layout as the previous column, but use a media component in-
stead of a Level one:

Most popular books with cards

<div class="column is-12-tablet is-6-desktop is-4-fullhd" >
<div class="card">
<div class="card-content">
<h2 class="title is-4">
Most popular books
</h2>

<div class="media">
<div class="media-left is-marginless">
<p class="number">1</p>
</div>
<div class="media-left">

</div>
<div class="media-content">
<p class="title is-5 is-spaced is-marginless" >
Learning Swift
</p>
</div>
<div class="media-right">
146 sold
</div>
</div>

View all
books
</div>
</div>
</div>

Most popular books

Learning Swift 146 sold

View all books

89

90

CHAPTER 8: Creating notifications and cards

Two media- left elements are used here, which allows the Ul to place multiple narrow
elements side-by-side (the ranking and the cover image).
Now add a second and third book to the list:

Most popular books

Learning Swift 146 sold

L
5 #==% TensorFlow For 56 sold
‘l Machine
Intelligence
3 =| Choosing a 47 sold
ws | JavaScript
Framework

View all books

Most loyal customers

For the final column, you can provide an overview of the last content type: customers.
Right after the previous column, add the following:

<div class="column is-12-tablet is-6-desktop is-4-fullhd" >
<div class="card">
<div class="card-content">
<h2 class="title is-4">
Most loyal customers
</h2>

Most loyal customers

<div class="media">
<div class="media-left is-marginless">
<p class="number">1</p>
</div>
<div class="media-content">
<p class="title 1s-5 is-spaced is-marginless" >
John Miller
</p>
<p class="subtitle is-6">
United States
</p>
</div>
<div class="media-right">
7 orders
</div>
</div>

View all
customers
</div>
</div>
</div>

« button: Bulma component. Adds base styles for buttons.
« is-1link: Modifier class for buttons. Much like is-primary. Defaults to a blue color.

« i1s-outlined: Removed the background color of the button. Adds a colored border
and colored text based on the other modifier.

Most loyal customers

1 John Miller 7 orders
United States

View all customers

The Bulma media component is versatile enough to be re-used here, but with different
data, and with one fewer media-left.

92

CHAPTER 8: Creating notifications and cards

Add the second and third most loyal customers to the list:

Most loyal customers

1 John Miller 7 orders
United States

9 Samantha Rogers 5 orders
United Kingdom

Paul Jacques 2 orders
3
Canada

View all customers

The dashboard is now complete! Play with the content, change the modifier clases, and
add more columns.

Summary

Alex Johnson Thiss Moeth

» Booxs
B Customars 232
Orders
) Orders
Latest orders Most popular books Most loyal customers
787352 $66.98 1 Learning 136 vokd 1 John Miller Y ordars
Ny 18, 1738 iy ity Wi b e i Swift United States
289050 $22.99 . o " Samantha Rogers 5 oroer
Naw 16, 11:85 by =5 23 Box m v 3 enscrHow 56 sokt ~ United Kingdom
2 n For Machine
) intelligenc
918478 $22.99 eromee 3 Paul Jacques
RS R Conetn
3 | Choosinga 47 s0u ‘
ARSI 1% JavaScript View &l gustonis
; = Framowork
s ! book

As you have seen in the building of this admin area, Bulma components come in various
forms:

Layout utilities (section, columns, level...)

Single elements (box, button, input, notification...)

Multipart components (navbar, card, media, menu, pagination...)

Helper classes (has-text-grey-1light, is-hidden-tablet-only...)

Most Bulma users like to combine all of these parts in a plethora of different ways, to
build the Ul their website needs. But most importantly, they like to customize their Bulma
setup by providing their own colors and modifying the initial variables.

In the next chapter we will focus on using Bulma with Vanilla JavaScript.

93

Using Bulma with Vanilla JavaScript

Bulma does not come with any JavaScript implementation out of the box. In this chapter,
however, you will learn how to control different components of the admin template using
Vanilla JavaScript. If you’ve been following along, this chapter will be covering the follow-
ing components that are used in the admin template:

« Report a Bug Modal
Mobile Menu Toggle

Notifications

Dropdowns
Delete a book

Delete a customer

Report a Bug - Modal

In order to create the Report a Bug modal, you need the following components:

+ AButton element
« Bulma’s Modal component

« Bulma’s Notification element

Note: To see the full code of the example used in this book take a look at the book’s
accompanying GitHub page.

For our example you need a button with data-target pointingto the id of the modal.
In Bulma, modals can be shown and hidden using the is-active class. Using Vanilla Java-
script you can add and remove the is-active class using the classList property, target-
ing the unique modal component id on the button click.

<!-- trigger button markup -->
<button class="button is-white open-modal-button" data-target="report-a-bug">

<i class="fa fa-bug"></i>

95

96

CHAPTER 9: Using Bulma with Vanilla JavaScript

Report a bug

</button>

You can also add a notification element to show success/error notifications on sub-
mission. Here is the markup of the notifiction element you will be using inside the Mo-
dal.

<!-- Notification Element -->
<div class="notification is-success is-hidden modal-success-notification" >
 Thank You. Your bug has been reported.
</div>

In order to close the modal you need to add a button with the delete class, which
will become a cross icon. In order to close the Modal via JavaScript you have to give the
button close-modal-button class, which you will use to close the Modal through the
JavaScript code. Here is the HTML markup for the close button.

<button class="delete close-modal-button" aria-label="close"></button>
Lets combine all of the different pieces of the Modal component.

<!-- modal markup -->
<div class="modal" id="report-a-bug">
<div class="modal-background" ></div>
<div class="modal-card">
<header class="modal-card-head" >
<p class="modal-card-title" >Report a Bug</p>
<!-- Close Button -->
<button class="delete close-modal-button" aria-label="close"></
button>
</header>
<section class="modal-card-body" >
<!-- Notification Element -->
<div class="notification is-success is-hidden modal-success-
notification">
 Thank You. Your bug has been
reported.
</div>
<textarea class="textarea" placeholder="Let us know what prob-
lems you faced.">
</textarea>
</section>
<footer class="modal-card-foot" >
<button class="button is-success send-bug-report" >Send</button>

Report a Bug - Modal

<button class="button close-modal-button" >Cancel</button>
</footer>
</div>
</div>

The JavaScript code for Report a bug modal is next. This is not just for a single modal,
but it will take care of all modals you want to create throughout the application. You can
also add a notification using Bulma’s notification component and show/hide according to
your requirements.

// Getting all the modals, close and trigger buttons

var modals = document.querySelectorAll ('.modal');

var modalButtons = document.querySelectorAll ('.open-modal-button');
var modalClose = document.querySelectorAll ('.close-modal-button');

// For Success Message Notification
var successMessages = document.querySelectorAll('.modal-success-
notification');

// Adding a event listener to all the trigger buttons
if (modalButtons.length > 0) {
modalButtons . forEach(button => {
button.addEventListener ('click', function() {
document .getElementById (this.dataset.target).classList.add('is-
active');
1)
1)
}

// Adding event listeners to all the close buttons
if (modalClose.length > 0) {
modalClose.forEach(closeButton => {
closeButton .addEventListener ('click', function() {
modals.forEach(modal => {
modal.classList.remove('is-active');
// hiding success notification on closing the modal
successMessages .forEach(message => {
message.classList.add('is-hidden');
1)
1)
1)
1)
}

// For Showing the Success Notification
var sendBugReport = document.querySelector ('.send-bug-report');
if (sendBugReport !== null) {
sendBugReport .addEventListener ('click', function() {
successMessages .forEach(message => {

98

CHAPTER 9: Using Bulma with Vanilla JavaScript

message.classList.remove('is-hidden');
1)
1)

Now let’s explain the JavaScript code. For the report a bug modal, we are adding even-
tListener to the trigger button, which has a class of open-modal-button. Once the
Modal is open we are then closing the Modal using the close-modal-button class.

Mobile menu toggle

Bulma changes the navbar into a mobile menu with a burger icon at a specific breakpoint.
In order to make it workable you need to add some JavaScript code. You will create an
event listener and toggle the is-active class. You also have to toggle the burger ele-
ment’s class to 1s-active to change the burgericon to close the icon.

var burger = document.querySelector ('.burger');
var menu = document.querySelector ('.navbar-menu')
if (burger !== null) {
burger .addEventListener ('click', function() {
burger .classList.toggle('is-active');
menu.classList.toggle('is-active');

b

Notifications

Notifications can be used in many places to give users some extra information about the
operations they perform. For example, you can have a notification added to the Report a
Bug modal.

<div class="notification is-success is-hidden modal-success-notification" >
<button class="delete close-notification" ></button>
 Thanks. Your bug has been reported.
</div>

The notification shows up when you click send. So, in order to close the notification,
you can click on the close icon inside the notification. To remove the notification you can
create an event listener on the close icon using the .close-notifiction class and re-
move the notification. Here is the code you will need to add the functionality:

Dropdowns

var closeNotification = document.querySelectorAll('.close-notification');
if (closeNotification.length > 0) {
closeNotification.forEach(closeIcon => {
closelcon.addEventListener ('click', () => {
closeIcon.closest('.notification').remove();

b
b

Dropdowns

You can have both hoverable dropdowns and clickable dropdowns using Bulma.To make
any menu open on hover, you have to add the is-hoverable class to the toggle element.

<div class="dropdown is-hoverable">
<div class="dropdown-trigger" >
<button class="button" aria-haspopup="true" aria-controls="dropdown-
menu" >
Hover me

<i class="fa fa-angle-down" aria-hidden="true"></i>

</button>
</div>
<div class="dropdown-menu" 1id="dropdown-menu" role="menu">
<div class="dropdown-content" >
<div class="dropdown-item" >
<p>You can insert any type of content within the
dropdown menu. </p>
</div>
</div>
</div>
</div>

You can also change the functionality from hover to click. To use the click for dropdown
you need to create an event listener on the button and toggle the is-active class. The
code next will make every dropdown item without the is-hoverable class active on click.

var dropdowns = document.querySelectorAll ('.dropdown:not(.is-hoverable)');
if (dropdowns.length > 0) {
dropdowns . forEach(dropdown => {
dropdown .addEventListener ('click', event => {
event.stopPropagation();
dropdown.classList.toggle('is-active');
3);
3

99

100

CHAPTER 9: Using Bulma with Vanilla JavaScript

document .addEventListener ('click', event => {
dropdowns . forEach(dropdown => {
dropdown.classList.remove('is-active');

b
s

Delete a book item from books page

You can also delete a book item from the book’s list on the book’s page. Here is the code
you will need to achieve it. You need to create an event listener on the delete button with

each book and remove the closest column.

// for delete an item
var deleteltem = document.querySelectorAll ('.delete-item');

if (deleteltem.length > 0) {
deleteltem.forEach(button => {
button.addEventListener ('click', function() {
button.closest('.column').remove();
1)
1)

Delete a customer from customer page

To delete a customer from the customer list on the customer’s page you can use the code
below. You have to add an event listener on the delete button, and remove the closest row.

//for deleting a customer
var deleteUserButton = document.querySelectorAll('.delete-user');

if (deleteUserButton.length > 0) {
deleteUserButton .forEach(button => {
button.addEventListener ('click', function() {
button.closest('tr').remove();

19K
b

Summary
You should now have a basic understanding about how to control different components of

the Admin Template in Bulma using Vanilla JavaScript.
In the next chapter we use Bulma with Angular.

Using Bulma with Angular

As you know, Angular is a platform that makes it easy to build applications with the web.
Angular combines declarative templates, dependency injection, end-to-end tooling, and
integrated best practices to solve developmental challenges. But it does not provide you
with a rich Ul experience. This is where Bulma comes in.

As illustrated in examples of using Bulma with JavaScript, it’s really easy right? Now let’s
integrate our Bulma templates with the Angular framework! So, what do you need?

+ Knowledge of CLI
+ Node.js
« Angular CLI

If you don’t have these installed, it’s easy to get up and running with Angular. You simply
just need to download Node.js from the official website and follow the installation instruc-
tions. After Node is installed, you need to install the Angular CLI via NPM.

Node.js Website: https://nodejs.org/en/
Install Angular CLI
npm install -g @angular/cli

Project preparation

Now let’s create a brand new Bulma and Angular project with those step-by-step instruc-
tions. This chapter is going to rely on the command line pretty heavily. Don’t worry though,
this chapter will document the commands needed to get your project up and running.

+ Navigate to your project directory and create a folder.

mkdir my-repos
cd my-repos

101

102

CHAPTER 10: Using Bulma with Angular

« Creating a new application is not too complicated, but if you want to learn more fea-

tures, you can read about them at cli.angular.io.Angular CLlis going to install of
the dependencies needed to get the local environment up and running.

ng new sample-application --style scss --routing
cd sample-application

+ Add Bulmato your Angular application.

npm install bulma --save
npm install font-awesome --save

Note: This project is also using Font Awesome. Make sure you check out their documen-
tation for more information.

« Let’s editthe .angular-cli. json file by adding Bulma and Font Awesome to the
styles section.

. ./node_modules/bulma/bulma.sass
. ./node_modules/font-awesome/scss/font-awesome.scss

The styles section of your .angular-cli. json file should resemble this:
"styles": [
"../node_modules/bulma/bulma.sass" ,

"../node_modules/font-awesome/scss/font-awesome.scss" ,
"styles.scss”

1.

+ You’re almost there. Let’s start the application by running:
npm start

or

ng serve --open

Remember, you can customize these commands later on in the package. json file.

Application

The application that you will be building is a simple book store for a book publishing com-
pany. Let’s begin with a dashboard, and then add the books’ catalog, customers, and or-
ders lists. Is it possible to achieve all of this with Bulma? Sure, you have everything that is
needed for such functionality!

Components

All you need is to generate the components.

ng g component components/[component-name]

Please remember that this is a common way to create any component. You will most
likely use this same console command frequently in the future.

Components

Now you can open the app.component.html and fill it in with html markup. This compo-
nent will be responsible for navigation throughout the application.
First, let’s create a top menu. It will look like this:

o Blesswo Eioe Petyy

What will you need? navbar, navbar-brand, navbar-item, navbar-start, and
navbar-end classes will help you do the job. By combining these classes you should have
this markup, or something similar to this:

<nav class="navbar has-shadow">
<div class="navbar-brand" >

<div [ngClass]="{'1is-active': active==true}" class="navbar-burger
burger" (click)="active=!active"s

</div>
</div>

<div [ngClass]="{'1is-active': active==true}" class="navbar-menu">
<div class="navbar-start">
<div class="navbar-item">
<small>Publishing at the speed of technology </small>
</div>
</div>

<div class="navbar-end">
<div class="navbar-item has-dropdown is-hoverable" >
<div class="navbar-1link">
Alex Johnson
</div>
<div class="navbar-dropdown" >

CHAPTER 10: Using Bulma with Angular

<div>

<i class="fa fa-user-circle-o0"></i>
 Profile
</div>

<div>

<i class="fa fa-bug"></i>
 Report bug
</div>

<div>

<i class="fa fa-sign-out"s></i>
 Sign Out
</div>

</div>
</div>
</div>
</div>
</nav>

As for the sidebar, it will simply need the menu, menu-1list, and menu-label classes.

<section class="section ">
<div class="columns ">
<div class="column is-4-tablet is-3-desktop is-2-widescreen" >
<nav class="menu">
<p class="menu-label">
Menu
</p>
<ul class="menu-list">

<a [routerLinkActive]="["'1is-active']" [router-
Link]="["'/dashboard']">

<i class="fa fa-tachometer"s</i>
 Dashboard

</1i>

<a [routerLinkActive]="["'1is-active']" [router-
Link]="["'/books']">

104

Components

<i class="fa fa-book"></i>
 Books

</1i>

<a [routerLinkActive]="["'1is-active']" [router-
Link]="["'/customers']">

<l class="fa fa-address-book"></i>
 Customers

</1i>

<a [routerLinkActive]="["'1is-active']" [router-
Link]="["'/orders']">

<l class="fa fa-file-text-o0"></1>
 Orders

</nav>
</div>
<main class="column
<router-outlet></router-outlet>
</main>
</div>
</section>

>

You should replace the content container with <router-outlet></router-outlet>.
It should look something like this:

<main class="column ">
<router-outlet></router-outlet>
</main>

Now let’s add a child component to the application. You can do it manually or by run-
ning a command. Angular CLI can generate a component for you.

ng g component components/dashboard -m routing.module

After the component gets generated, go ahead and open the dashboard.compo-
nent.html and write some custom markup. For the sake of this chapter, the book is going
to use the example above. Remember that you are inserting only the content part of the
markup.

To see the full code of the example used in this book see the books accompanying Git-
Hub page.

105

CHAPTER 10: Using Bulma with Angular

« ContentHeader

Alex Johnson

<div class="level">
<div class="level-left">
<h1l class="subtitle is-3">
Hello
Alex Johnson
</h1>
</div>
<div class="level-right"s>
<div class="select">
<select [(ngModel)]="filter" (ngModelChange)="onChange($event)">
<option>Today</option>
<option>Yesterday</option>
<option>This Week</option>
<option>This Month</option>
<option>This Year</option>
<option>All time</option>
</select>
</div>
</div>
</div>

« TheSummary Tiles

<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-link has-text" >
<p class="title is-1">{{statistics[0].orders}} </p>
<p class="subtitle is-4">0rders</p>
</div>
</div>

<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-info has-text"s
<p class="title is-1">${{statistics[0].revenue}} </p>
<p class="subtitle is-4">Revenue</p>
</div>
</div>

<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-primary has-text" >
<p class="title is-1">{{statistics[0].visitors}} </p>
<p class="subtitle is-4"sVisitors</p>
</div>
</div>

106

Components

<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-success has-text" >
<p class="title is-1">{{statistics[0].pageviews}} </p>
<p class="subtitle is-4">Pageviews</p>
</div>
</div>

« Content Cards

<div class="column is-12-tablet is-6-desktop is-4-fullhd" >
<div class="card">
<div class="card-content">
<h2 class="title is-4">
Latest orders
</h2>

<div class="level" *ngFor="let order of orders; let i1 =
index">
<div class="level-left">
<div>
<p class="title 1s-5 is-marginless" >
<a [routerLink]="['/orders-edit']" [queryPar-
ams]="{id: order.id }"s{{ order.number }}
</p>
<small>
{{ order.date }} by
{{ order.customer }}
</small>
</div>
</div>
<div class="level-right">
<div class="has-text-right">
<p class="title is-5 is-marginless" >
${{ order.total }}

</p>

<span *ngIf="order.status === 'In progress'"
class="tag is-warning">{{ order.status }}

<span *nglf="order.status === 'Successful'"
class="tag is-success">{{ order.status }}

<span *nglf="order.status === 'Failed'"
class="tag is-failed">{{ order.status }}

</div>
</div>
</div>

<a class="button is-link is-outlined" [routerLink]="['/or-
ders']">View all orders
</div>
</div>

107

CHAPTER 10: Using Bulma with Angular

</div>

<div class="column is-12-tablet is-6-desktop is-4-fullhd" >
<div class="card">
<div class="card-content">
<h2 class="title is-4">
Most popular books
</h2>

<div class="media" *ngFor="let book of books; let 1 = index" >
<div class="media-left is-marginless">
<p class="number"s>{{i1 + 1}}</p>
</div>
<div class="media-left">

</div>
<div class="media-content">
<p class="title 1s-5 is-spaced is-marginless" >
<a [routerLink]="["'/books-edit']" [queryPar-
ams]="{id: book.id }">{{book.title}}
</p>
</div>
<div class="media-right">
{{ filter }}
</div>
</div>

<a class="button is-link is-outlined" [routerLink]="["/
books']">View all books
</div>
</div>
</div>

<div class="column is-12-tablet is-6-desktop is-4-fullhd" >
<div class="card">
<div class="card-content">
<h2 class="title is-4">
Most loyal customers
</h2>

<div class="media" *ngFor="let customer of customers; let i
= index">
<div class="media-left is-marginless">
<p class="number"s>{{i1 + 1}}</p>
</div>
<div class="media-content" >
<p class="title 1s-5 is-spaced is-marginless" >
<a [routerLink]="["'/customers-edit']" [queryPar-
ams]="{id: customer.id }">{{ customer.name }}

</p>

108

Components

<p class="subtitle is-6">
<td>{{ customer.country }}</td>

</p>
</div>
<div class="media-right">
{{ customer.orders }} orders
</div>
</div>

<a class="button is-link is-outlined" [routerLink]="["/cus-
tomers']"sView all customers
</div>
</div>
</div>

Let’s add an Orders component to the application. Again, you can create a component
manually or by running a command.

ng g component components/orders -m routing.module

Now you can open the orders.component.html and fill it in with some custom HTML
markup. There will be three main parts.

1. Header

Orders

2 orders ea AN

<h1l class="title ">Orders</h1>

<nav class="level">
<div class="level-left">
<div class="level-item" >
<p class="subtitle is-5">
2 orders
</p>
</div>
<div class="level-item is-hidden-tablet-only" >
<div class="field has-addons">
<p class="control">
<input class="input" type="text" placeholder="0Order #a
€," [(ngModel)]="userFilter .number">
</p>
<p class="control">
<button class="button" (click)="userFilter .number = ''">

109

110

CHAPTER 10: Using Bulma with Angular

Clear
</button>
</p>
</div>
</div>
</div>

<div class="level-right">
<p class="level-item" (click)="userFilter
''"><a>All</p>
<p class="level-item" (click)="userFilter.
gress' "><a>In progress</p>
<p class="level-item" (click)="userFilter
ful'"><a>Successful</p>
<p class="level-item" (click)="userFilter
'Failed' "><a>Failed</p>
</div>
</nav>

1. Grid

<table class="table is-hoverable is-fullwidth" >
<thead>
<tr>
<th>Order #</th>
<th>Customer</th>
<th>Date</th>
<th>Books</th>
<th>Status</th>
<th class="has-text-right" >Total</th>
</tr>
</thead>
<tfoot>
<tr>
<th>0rder #</th>
<th>Customer</th>
<th>Date</th>
<th>Books</th>
<th>Status</th>
<th class="has-text-right" >Total</th>
</tr>
</tfoot>
<tbody>

<tr *ngFor="let order of orders | filterBy:

order"s>
<td>
<a [routerLink]="["'/orders-edit']
der.id }"s>{{ order.number }}
</td>
<td>

.status =
status = 'In pro-
.status = 'Success-
.status =

userFilter | orderBy:

[queryParams]="{id: or-

Components

<a [routerLink]="["'/customers']">{{ order.customer }}
</td>
<td>{{ order.date }}</td>
<td>{{ order.books }}</td>

<td>
<span *nglf="order.status === "In progress'" class="tag 1is-
warning">{{ order.status }}
<span *ngIf="order.status === 'Successful'" class="tag is-
success">{{ order.status }}
</td>
<td class="has-text-right" s${{ order.total }}</td>
</tr>
</tbody>
</table>
1. Pagination

<nav class="pagination">
Previous
Next page
<ul class="pagination-list">

1

a€|

1
</1i>

</nav>

Let’s add a customers component to our application.
ng g component components/customers -m routing.module

Now you can open the customers.component.html and fill it in with some more cus-
tom HTML. It will be similar to the previous components.

1. Header

111

112

CHAPTER 10: Using Bulma with Angular

<h1l class="title ">Customers</h1l>

<nav class="level">
<div class="level-left">
<div class="level-item">
<p class="subtitle is-5">
{{ (customers | filterBy: userFilter).length }} </
strong> customers
</p>
</div>

<p class="level-item">
New

</p>

<div class="level-item 1is-hidden-tablet-only" >
<div class="field has-addons">
<p class="control">
<input class="input" type="text" placeholder="Namea€,"
[(ngModel)]="userFilter .name">

</p>

<p class="control">
<button class="button" (click)="userFilter.name = ''">

Clear

</button>

</p>

</div>
</div>
</div>

<div class="level-right">

<p class="level-item" (click)="userFilter .hasOrders = >

<a>
All

</p>

<p class="level-item" (click)="userFilter .hasOrders = true">
<a>With orders

</p>

<p class="level-item" (click)="userFilter .hasOrders = false">

<asWithout orders
</p>
</div>
</nav>

1. Grid

<table class="table is-hoverable 1is-fullwidth" >
<thead>
<tr>

</tr
</thead>
<tfoot>

<tr>

</tr
</tfoot>
<tbody>

<tr

By: order"s

customer .id

edit']" [que

</tr

Components

<th class="is-narrow">
<input type="checkbox">

</th>

<th>Name</th>

<th>Email</th>

<th>Country</th>

<th>0rders</th>

<th>Actions</th>

>

<th class="is-narrow">
<input type="checkbox">

</th>

<th>Name</th>

<th>Email</th>

<th>Country</th>

<th>0rders</th>

<th>Actions</th>

>

*ngFor="1let customer of customers | filterBy: userFilter | order-

<td>
<input type="checkbox">
</td>
<td>
<a [routerLink]="['/customers-edit']" [queryParams]="{id:
">
{{ customer.name }}

</td>
<td>
<code>{{ customer.email }}</code>
</td>
<td>{{ customer.country }}</td>
<td>
<a [routerLink]="["'/orders']">{{ customer.orders }}
</td>
<td>
<div class="buttons">
<a class="button is-small" [routerLink]="['/customers-

ryParams]="{id: customer.id }"sEdit
Delete
</div>
</td>
>

113

114

CHAPTER 10: Using Bulma with Angular

</tbody>
</table>

1. Pagination

<nav class="pagination">
Previous
Next page
<ul class="pagination-list">

1

a€|

1

</nav>

Continuing on, let’s create a books component to your application.
ng g component components/books -m routing.module

Now you can open the books.component.html and fill it in with HTML markup that
you want. Remember that this code snippet below is only the content part of the markup.

1. Header

<h1l class="title ">Books</hi>

<nav class="level">
<div class="level-left">
<div class="level-item" >
<p class="subtitle is-5">
{{ (books | filterBy: userFilter).length }}
books
</p>
</div>

<p class="level-item">
<a class="button is-success" (click)="add()"sNew

</p>

<div class="level-item is-hidden-tablet-only" >
<div class="field has-addons">
<p class="control">
<input class="input" type="text" placeholder="Book ti-

Components

tle..." [(ngModel)]="userFilter.title">

</p>

<p class="control">
<button class="button" (click)="userFilter.title = ''">
Clear

</button>
</p>
</div>
</div>
</div>

<div class="level-right">
<div class="level-item">
Order by
</div>
<div class="level-item" >
<div class="select">
<select [(ngModel)]="order">
<option value="title">Title</option>
<option value="price">Price</option>
<option value="pages">Page count</option>

</select>
</div>
</div>
</div>
</nav>
1. Tiles

<div class="columns is-multiline"s
<div class="column is-12-tablet is-6-desktop is-4-widescreen"
*ngFor="1let book of books | filterBy: userFilter | orderBy: order" >
<article class="box">
<div class="media">
<aside class="media-left">

</aside>
<div class="media-content" >
<p class="title 1s-5 is-spaced is-marginless" >
<a [routerLink]="["'/books-edit']" [queryPar-
ams]="{id: book.id }">{{book.title}}
</p>
<p class="subtitle is-marginless">
${{book.price}}
</p>
<div class="content is-small">
{{book.pages}} pages

 ISBN: {{book.ISBN}}

115

CHAPTER 10: Using Bulma with Angular

<a [routerLink]="["'/books-edit']" [queryPar-
ams]="{id: book.id }"sEdit
A.
<a>Delete
<p></p>
</div>
</div>
</div>
</article>
</div>
</div>

1. Pagination

<nav class="pagination">
Previous
Next page
<ul class="pagination-list">

1

a€|
</1i>

1
</1i>

</nav>

Summary

Now you can run the application. As you can see it is really easy to use the Bulma frame-
work with Angular! | hope you understand why you use Bulma classes with Angular instead
of how you use them.

The next chapter covers using Bulma with VueJS.

116

Using Bulma with VueJS

In this chapter we implement parts of the admin dashboard from earlier with the progres-
sive JavaScript framework VueJS. It’s important to keep in mind that this is not a tutorial
on VueJS itself. Rather, it’s more about implementing Bulma with your VueJS application.

If you need more help with VueJS head over to the VuelS official documentation,
which like Bulma’s documentation is very good and is an easy read as far as documenta-
tion is concerned.

Installing Vue-CLI

In this chapter, you will be using Vue’s command line tool, vue-cli. To get started with
vue-cli, run the following commands:

npm install -g vue-cli

vue init <template> <project-name>
cd <project-name>

npm install

npm run dev

This chapter will be using the webpack-simple template. This is one of many templates
that you can choose to download when creating your Vue application with vue-cli. Make
sure you replace <template> with webpack-single during the vue-cli setup. This
chapter is also going to make use of Vue-Router to easily handle navigating between “pa-
ges” on the dashboard. Routing is essential for every single page application. With it, you
can mount a single parent component with its child components based on a URL.

Note: There are a total of six different templates to choose from with the CLI. To find out
what they include check out the Vue CLI github repo.

Before you jump into setting everything up, there are some prerequisites for this chap-
ter. In order to have a basic understanding of integrating Bulma with Vue, you need the fol-
lowing installed:

+ Node

117

CHAPTER 11: Using Bulma with VueJS

« NPM
* Vue CLI

Setting up the Vue project

Let’s start by installing vue-cli with a fresh VueJS project. As mentioned earlier, this chap-
ter uses the webpack-simple template with “bulma-dashboard” as the name of the
project.

The directory structure should look similiar to this:

+ bulma-dashboard [project name folder]
® node_modules/
® src/
= assets/
= App.vue
» main.js
® index.html
® package.json
X README.md
® webpack.config.js

Preparing pages

Before continuing with implementing vue-router you should set up skeletons for all of
your components. Create a new pages/ directory inside the src/ folder. Next, create .vue
files for the components: Dashboard.vue, Books.vue, Orders.vue, and Login.vue.
Your text editor of choice might be able to create . vue files already, but if not, here’s a little
snippet for what the every . vue file should include:

<template>
</template>
<script>

export default {
name: [INSERT NAME OF COMPONENT]

}
</script>

<style>

</style>

118

Setting up the Vue project

Note: If you have a Sass loader installed and configured with Webpack, add the
lang="sass" attribute to your style tag.

Switch out [INSERT NAME OF COMPONENT] for your page name. For example,
“Books.”

Vue-Router

Now, add vue-router to the project. There are a few different ways of doing this. Here is
one way of installing it while keeping the code organized.

« Install vue-router:
npm install vue-router

+ Create afolder named router/ to the root folder.

« Create a file named index. js inside this new router/ folder.
+ Inside the file, import Vue-Router with components you want to route to.

import VueRouter from 'vue-router'

« Feedthe routes:{} object tothe new Router(). Your routes object should con-
tain an array of components and their names.

« Lastly, inside yourmain. js file, import the new router index. js file and add it
when initializing Vue, inside the new vue() instance.

Yourrouter/index. js file should resemble something close to this:

import Vue from "vue";

import Router from "vue-router";

import Dashboard from "../pages/Dashboard.vue" ;
import /*...(rest of pages) */

Vue.use(Router);

export default new Router ({
routes: [
{
path: "/",
redirect: '/dashboard'
}s

{
path: "/dashboard",

name: "Dashboard",
component : Dashboard,

1,
/*...(rest of pages) */

119

120

CHAPTER 11: Using Bulma with VueJS

1,

linkActiveClass: 'is-active' /* change to Bulma's active nav link */

s

The main. js file should resemble something like the following:

import Vue from "vue";
import App from "./App.vue";

import router from "./router";
/* other stuff */
new Vue({
el: "#app",
router,
render: h => h(App),
IOF

That is it for the simple router, but if you wish to learn more check out the Vue-Router
docs.
You should now be able to run the application with the following command:

npm run dev

Installing Bulma

To round off this setup section, let’s add the latest version of Bulmas CSS to the Vue

project. There are two main ways that this can be done: Adding it via a CDN with a <link>
tag or adding it via NPM.

Option 1: Adding Bulma via a CDN

In case you are only testing out Bulma and you know you won’t need any customization,
adding it via a <link>tag might suffice. In that case, open the index.html file inside your

project root, and inside the <head> tag add Bulma via a CDN just like any other stylesheet
in a website.

<link href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.6.2/css/
bulma.min.css" rel="stylesheet">

Installing Bulma

Option 2: Adding Bulma via NPM (Recommended)

This is the recommended way of adding external libraries in single page applications. When
creating your project with vue-cli you are also installing Webpack with configurations al-
ready made. Adding Bulma via NPM will add the CSS framework and will bundle it in your

build.js
INSTALL BULMA THROUGH NPM
npm install bulma --save
Then open up main. js and from here, you import Bulma.

import './../node_modules/bulma/css/bulma.css’' ;

This is easy and simple, with one caveat. In order to customize any Bulma variables

unique to your application, you need to create a styles.css fileinside your src/assets/
directory. From here, you can start importing the initial variables and function files. Then
add your customizations, and finally, import the main bulma file.

@import '../../node_modules/bulma/sass/utilities/initial-variables';
@import '../../node_modules/bulma/sass/utilities/functions';

$Sprimary: #ffb3b3; /* changes primary color to pink */

@import '../../node_modules/bulma/bulma’;
Then change theimportin the main. js file to the custom styles file instead.

import router from "./router";

import './assets/custom.scss' ;

BONUS: CREATING AN ALIAS FOR YOUR BULMA DEPENDENCY

As stated before, if you import Bulma with NPM, one way to use it is with an ES6 import
statement. However, this path needs to be a relative link. You can easily make this absolute
with a Webpack alias.

To create an alias in Webpack, open up your build/webpack.dev.conf. js file and
paste the following code above the module object.

resolve: {
extensions: ['.css'],
alias: {
'bulma': resolve('node_modules/bulma/css/bulma.css'),

121

122

CHAPTER 11: Using Bulma with VueJS

}

This will create the alias. From here you can now import Bulma with an absolute link
that is a little easier to read.

import 'bulma’';

Note: As with everything in JavaScript, there are several Vue+Bulma packages around
the web to install; all with their own pros and cons.

Make use of Font-Awesome

Finally, you’ll want to use Font-Awesome fonts in the app, so for this you can simply link to
Font-Awesome from a CDN.
Open your index.html file and add the following to the <head>section.

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/1libs/font-
awesome/4.7.0/css/font-awesome.min.css" >

The final folder structure looks something like this:

+ bulma-dashboard [main project folder]
® node_modules/
® src/
» assets/
= images/
= styles.scss
» logo.png
- pages/
= Books.vue
= Customersvue
« Dashboard.vue
» Loginwvue
» Orders.vue
= router
= index.js
= App.vue
» main.js
index.html
® package.json

Setting up components with Vue

® README.md
® webpack.config.js

In the next section, you should pull in the base skeleton and templates for the app in the
earlierHTML section.

Setting up components with Vue

Note: Depending on your Vue knowledge and whether or not you are following along with
the previous examples, you can skip to the next section where this chapter will explain im-
plementing more Bulma functionality. The snippets from now on might not be complete,
but for full code see the books accompanying GitHub page.

In the last chapter you setup Vue with routing and installed Bulma. Now it’s time to
move over the HTML from previous chapters into the .vue files. You will start with setting
the main template in the App.vue file and then create some of the components from the
previous chapters inside the pages folder. Later, you will finish off a few components with
more interactive functionality.

Admin skeleton

Let’s start with moving a little bit of code from /html/dashboard.html to the App.vue
file. One thing to note is that we remove all “content” from the file because that code re-

sides in each component’s own .vue file.

<div id="app">
<nav class="navbar has-shadow">
<div class="navbar-brand" >

<div class="navbar-burger burger"s

</div>
</div>

<div class="navbar-menu" >
<div class="navbar-start"s
<div class="navbar-item">
<small>Publishing at the speed of technology </small>
</div>
</div>

123

CHAPTER 11: Using Bulma with VueJS

<div class="navbar-end">
<div class="navbar-item has-dropdown is-hoverable" >
<div class="navbar-link">
John Doe
</div>
<div class="navbar-dropdown" >

<l class="fa fa-user-circle-o0"></1>
 Profile

<i class="fa fa-bug"></i>
 Report bug

<i class="fa fa-sign-out"></i>
 Sign Out

</div>
</div>
</div>
</div>
</nav>

<section class="section">
<div class="columns">
<div class="column is-4-tablet is-3-desktop is-2-widescreen" >
<aside class="menu">
<p class="menu-label" >Menu</p>
<ul class="menu-list">

<router-1link to="/dashboard">

<i class="fa fa-tachometer"s</i>
Dashboard</router-1ink>
</1i>

<router-link to="/books">

<1 class="fa fa-book"></1>
 Books
</router-1link>
</1i>

<router-1link to="/customers">

<i class="fa fa-address-book"></i1>

124

Admin skeleton

 Customers
</router-1link>

<router-1link to="/orders"s>

<i class="fa fa-file-text-o0"></i>

Orders
</router-1link>

</aside>
</div>
<main class="column">
<router-view></router-view>
</main>
</div>
</section>
</div>

Let’s take a closer look at the snippet above to see what’s different compared to the
pure HTML version. You might have noticed two things, especially <router-1link> and
<router-view>. These two tags are used because of vue-router, which you installed
with Vue in the last section. As you might recall, this makes Vue able to handle routing. By
visiting a route or URL, you can mount and render a certain component; this makes the app
a single page application.

The <router-link></router-1link> tag translates into a plain
tag. The to="" attribute corresponds to a specific path variable that you defined in your /

router/index. js file (snippet below).

routes: [

{
path: "/dashboard",

name: "Dashboard",
component : Dashboard,

}.o..

The <router-view></router-view> tagis where the contents of the current compo-
nent (route) will be displayed. So after you have logged into the site, the Dashboard com-
ponent will be shown and the code from Dashboard.vue will be inserted in the DOM

where <router-view></router-view> is placed.

125

126

CHAPTER 11: Using Bulma with VueJS

Implementing the dashboard

In your file structure you should have a pages/ folder, and inside that folder you should

have an empty Dashboard.vue file. In this file you will add the code from the main area
from the HTML version.

Let’s start with the top part of the Dashboard page, which contains the logged in users
name and a dropdown used to filter results.

<div class="level">
<div class="level-left">
<h1l class="subtitle is-3">
Hello
Alex Johnson
</h1>
</div>
<div class="level-right">
<div class="select">
<select @change="changeStats">
<option value="today" selected>Today</option>
<option value="yesterday">Yesterday</option>
<option value="week">This Week</option>
<option value="month">This Month</option>
<option value="year">This Year</option>
<option value="alltime">All time</option>
</select>
</div>
</div>
</div>

There is nothing really different from the HTML version here, except the values on the
<option> and a @change="changeStats" onthe <select>. That is Vue code for listening
on the change event of the select. When you select a different option, the changeStats()
method gets fired and it changes the stats on display.

So, let’s implement the stats section next, together with a data object, so that you can
change the stats.

<div class="columns is-multiline">
<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-link has-text" >
<p class="title is-1">{{ selectedStats.orders }}</p>
<p class="subtitle is-4">0rders</p>
</div>
</div>

<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-info has-text" >

Implementing the dashboard

<p class="title is-1">${{ selectedStats.revenue }}</p>
<p class="subtitle is-4">Revenue</p>
</div>
</div>

<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-primary has-text" >
<p class="title is-1">{{ selectedStats.visitors }}</p>
<p class="subtitle is-4"sVisitors</p>
</div>
</div>

<div class="column is-12-tablet is-6-desktop is-3-widescreen" >
<div class="notification is-success has-text" >
<p class="title is-1">{{ selectedStats.pageviews }}</p>
<p class="subtitle is-4">Pageviews</p>
</div>
</div>
</div>

Here you are introduced to Vue’s template syntax {{ selectedStats.revenue }},al-
so known as string interpolation. The text inside the curly-brackets {{ }} are variables

from your data object. Go ahead and add the following data object inside the data() {}
method.

export default {
name: 'Dashboard',
data() {
return {
stats: {
today: {
orders: "232",
revenue: "7,648",
visitors: "1,678",
pageviews: "20,756"
s
yesterday: {
orders: "200",
revenue: "5,465",
visitors: "1,400",
pageviews: "18,556"

s

week: {...},
month: {...},
allTime: {...}

}
}
}
}

127

128

CHAPTER 11: Using Bulma with VueJS

Now that you we have some data and code in place for the stats boxes, you can imple-
ment the changeStats() method. Below the data() method you can add the following
piece of code, which also sets today’s stats when the page loads.

mounted: function(){
this.selectedStats = this.stats.today;
s
methods: {
changeStats (event) {
this.selectedStats = this.stats[event.target.value];
}
}

Lastly, let’s take a closer look at the first column of three with the latest orders. It con-
tains a list of the latest orders with ordernumber, date, customer, price, and status of
the order. The order status code contains Bulma’s .tag class together with a modifier
class, which gives the viewer a visual understanding of the order status.

Note: Modifier classes in Bulma begin with is- or has-.

This is what the template code for the LatestOrders list looks like:

<div class="column is-12-tablet is-6-desktop is-4-fullhd" >
<div class="card">
<div class="card-content">
<h2 class="title 1s-4">Latest orders</h2>

<template v-for="(order, key) in orders">
<div class="level" :key="order.id">
<div class="level-left">
<div>
<p class="title is-5 is-marginless" >
<router-link to="/edit-order">{{ order.id }}</router-1link>
</p>
<small>{{ order.date }} by <router-link to="/edit-
customer">{{ order.purchasedBy }}</router-link></small>
</div>
</div>
<div class="level-right">
<div class="has-text-right">
<p class="title 1s-5 is-marginless" >${{ order.price }}</p>
{{ order.sta-
tus.label }}
</div>
</div>
</div>
</template>
<router-1link class="button is-link is-outlined" to="/orders"sView all
orders</router-link>
</div>

First Vue template: Login page

</div>
</div>

So what is happening here is that Vue is looping through the orders array and for each
order, Vue print’s out its details. The thing to point out here is the :class="" attribute.
This is a special Vue attribute that let’s you manipulate the class list by binding to your da-
ta. In the snippet above we bound it to an orders status class value. What does this mean?
Let’s look at a shortened example of the data object for an order.

Note: A colon (:) is shorthand for v-bind:. So, the :class=

above could also be v-

bind:class="".
orders: [
{
id: 787352,

date: "Nov 18, 17:38",
purchasedBy: "John Miller",
price: "56.98",
status: {
label: "In Progress",
class: "is-warning"

}
s
{
id:
status: {
label: "Successful",
class: "is-success"
}
s
{...}

As you can see, the first order has a status.class of is-warning, while the second
one has is-success. You want all of the status to be tags, so give them the . tag
class. However, the status itself is a variable that is depending on each order. Vue gives you
a simple way of toggling CSS classes with the :class=

Note: More on loops in Vue.

attribute binding.

First Vue template: Login page

In this chapter we take the code from the login.html page and convert that into a Vue com-
ponent, or page if you will. Here it is a page, but technically each page is just another Vue
component. Let’s get started.

129

130

CHAPTER 11: Using Bulma with VueJS

Open up your login.html file and copy over everything inside the <body></body>
tags into the <template><template> part of the Login.vue file. If you visit your /login
route, you should now see the same page as your static version. Let’s make this page a bit
more interactive with Vue.

You might have noticed that the header and side navigation are visible, which they
shouldn’t be. This is because you use App.vue as a base for the admin app. For tutorial
purposes, we can make an easy fix for this. You should not do this for production code.
What you need to do is wrap your <nav> and <section> with a <template> tag and a
check if you are on the login page. To accomplish the latter, you can check a global variable
named this.$route. This is available when importing vue-router. If you want to check
a specific route, do so with this.$route.name.

<template v-if="$route.name !== 'Login'">
<nav>
<!--pavigation code-->
</nav>
<section>
<!--main content-->
</section>
</template>
<div v-else><router-view/></div>

Note: Inside template code (HTML) we can skip this and just write out the variable.

If you test your login page now, it should cover the full size of the page.

Now let’s focus on the login page. First off you’ll create the data object. You want some-
thing to hold your form field information and an error object, so you can toggle error mes-
sages on the form. Here’s what we came up with:

data() {
return {

form: {
email: "",
password:

}’

error: {
email: false,
password: false

}
}

1

Great, the second thing you need to do is connect these with the form code in the <tem-

plate>. On the input elements, you can add v-model="" statements, which binds the in-
put value to the data object. So, in this case it's v-model="form.email" and v-

model="form.password" . For the errors, you want to show an error-message and high-

First Vue template: Login page

light the input with a red border. Bulma has modifier classes that can be used in many sit-
uations. For example, the .is-danger class is perfect in this case. You can combine an ele-

ment with the .help class combined with .1s-danger to show a small help, or an error
message in red text.

Start by adding the helper element below <div class="control">. This could be
something like:

<p class="help is-danger" v-if="error.email">0ops! Can't find user.</p>

Then add a second one below the div.control of the password. To toggle the .1is-
danger class on the inputs, you’ll want to make use of Vue’s class-bindings. They look like
this :class="{"some-class': someVariable}".Both inputs will only have one toggla-
ble class. On each <input> add, :class="{'is-danger': error.email}"
and :class="{'is-danger': error.password}" respectively.

You are almost done. The only thing that is missing now is submitting the form and
checking to see if the values match. For the sake of simplicity, this chapter won’t be con-
necting to a real authentication service. That’ll be up to you to implement if you so wish.

On the <button>, add an event handler: @click.prevent="tryLogin". Down in the
<script> section, add a new methods object and the tryLogin() method.

methods: {
tryLogin(){
}

}

The tryLogin() method will do the following:

1. Checkif username/password is correct.
2. Show errors if any.

3. Reset possible errors.

4. Senduserto Dashboard.

Nothing very fancy is going on here, but you get to see some Bulma classes in action.
The finished method looks like this:

tryLogin() {
this.resetErrors();

if(this.form.email !== 'user@bulma.com'){ return this.error.email = true; }
if(this.form.password !== 'password'){ return this.error.password = true; }

this.resetErrors();
this.$router .push('dashboard');

3

131

CHAPTER 11: Using Bulma with VueJS

resetErrors(){
this.error.email = false;
this.error.password = false;

}

Note: We reset the errors both before and after the 1f checks. This is because you don’t
want any dangling error messages hanging around after the field has been validated.

This pretty much covers the Login component. Hopefully you learned how to show error
messages on forms and also toggle a class on elements to highlight errors on input fields.

Creating the “Report a Bug” component

This chapter will recreate the functionality for the Report a Bug modal. You can access this
modal from the user menu in the top-right corner of the topbar. The modal will contain a
simple text input and will display a success notification if your imaginary request is suc-
cessfully completed.

This is what you will be creating:

Create a BugReport component.

Import the component in the App. vue file.
Addthemodal’s HTML.
Add Vue awesomeness.

Creating a component

Let’s get going with the first point and create the new component. In the components fold-
er, create a BugReport. vuefile and start with the following snippet:

<template>
</template>
<script>

export default {
name: "BugReport"

}
</script>
<style>
</style>

You can go ahead and copy the code for the Modal card from the Bulma documentation
and insert it between the <template></template> tags. Add a nice heading inside

132

Creating the “Report a Bug” component

the .modal-card-title tag. Inside the .modal-card-body you have the input and no-
tification.

<div class="notification is-success" :class="{'is-hidden': hideNotifica-
tion}">
<p>
<i class="fa fa-bug"></i>
Thanks. Your bug has been reported.

</p>
<p>We will do our best to fix it as soon as possible </p>
</div>

<p class="help" :class="{'is-hidden': hideNotification}" >The following mes-
sage was sent</p>

<textarea class="textarea" placeholder="Let us know what problems you
faced." :disabled="!hideNotification" v-model="reportMessage"></textarea>

There are a few things going on here. The notification makes use of Vue’s class-attribute
binding :class="", which we’ve discussed earlier. If the variable hideNotification is true
then set the class .is-hidden to the notification wrapper, and also the little help text
above the <text-area>. Likewise, textarea also uses this variable, but when the oppo-
site is true. So when hideNotification is false, it’s assumed that the bug-report has been
sent and that the success notification is displayed. When it is, the help-text is displayed and
the textarea is disabled. So the user won’t be able to type any new text.

And finally, the textarea has a v-model for data-binding. This is so that you can grab
that text from the data object and send it off to where it needs to go.

Let’s create the data-objects you’ll need for the BugReport component.

export default {
name: "BugReport",
data() {
return {
reportMessage: "",
hideNotification: true,

}
}
}

Since this component will be used for other components, it will be the “parent” compo-
nent’s responsibility to open the modal. As you may know, Bulma modals are shown by
toggling the .1s-active modifier class. You can achieve this be sending down a property
from the parent, and if this property is true, you will toggle the is-active class. First let’s
modify the <script> to incorporate the incoming props.

133

134

CHAPTER 11: Using Bulma with VueJS

export default {
name: "BugReport",

props: {
showModal: {

type: Boolean,
default: false

}
s
data() {
return {
reportMessage: "",
hideNotification: true,

}
},
}

Secondly, use the same class attribute binding as above to toggle the .is-active class
on the .modal wrapper.

<div class="modal" :class="{'is-active': showModal}">
<!-- Modal code -->
</div>

Now that it is possible to open and show the modal, you’ll want to make sure it can
close or be dismissed too.
There are three ways to close the modal:

+ Clicking outside the modal (the dark background).
+ Clicking the close icon.
« Submitting or cancelling the bug-report.

You do not want to duplicate code, so make a closeModal() method, which will be re-
sponsible for closing the modal. Now, whichever way you choose to close it, a simple call

to the closeModal() method will get the job done.
You need to let the parent know that the modal should be closed. Given this, you need

to change the showModal’s property from true to false. Communication from child to
parent is done through events in Vue. This gives you the following closeModal() method,
where you can simply $emit a close event that the parent handles.

closeModal() {
this.Semit('close');

}

The first way to close the modal is implemented in the same fashion. On the .modal-
background element and the .delete button, you can simply add a @click="closeMo-
dal" handler.

Creating the “Report a Bug” component

Note: The at sign @ is short hand for v-on:. So the above click event could be v-
on:click="closeModal" .

For the cancel and submit buttons, create the new functions for sending the bug-report
and resetting the textarea. You can start with the resetModal() method, because it will
also be used by the sendReport() method.

resetModal () {
this.reportMessage = "";
this.closeModal();

1,

First, set the reportMessage variable to an empty string and then call the closeMo-
dal() method from earlier. The second method sends the bug-report as follows.

sendReport () {
/* Do some ajax request to send and save data. */
this.hideNotification = false

setTimeout (() => {
this.hideNotification = true;
this.resetModal();
}, 4000);
s

What’s happening here is that the status of hideNotification changes to false so the
notification will show up. To make it a bit more interactive, put in a setTimeout() of four

(4) seconds, after which you hide the notification again and call the resetModal() meth-
od.

The final thing to do is add click events on the buttons.

<button class="button is-text" @click="resetModal">Cancel</button>
<button class="button is-success" @click="sendReport">Send</button>

Our modalis done!

Add the Modal to the App Template

Now that your modal itself is done, you can make it functional from the top bar user menu.

Switch over to the App. vue file. Next, import the new component and add it to the compo-
nents object.

import BugReport from './components/BugReport.vue' ;

export default {

135

136

CHAPTER 11: Using Bulma with VueJS

name: 'app',
components: { BugReport },
data: function() {
return {
openBugReport : false

}
}
}

Then add the component to the bottom of the HMTL template, above the last </div>.

<report-bug :showModal="openBugReport" v-on:close="openBugReport = false"></
report-bug>

Here you can see we are passing along the value of openBugReport to the : showModal
property attribute. You remember how that is the prop that you check for in the BugRe-
port component. Your code should also listen for the close event that you emitted from
the closeModal() method earlier. When that happens, the application sets openBugRe-

port to false, so the modal closes.
Lastly, add a click-handler on the “Report Bug” link. Change this piece of code in the

usermenu.

<i class="fa fa-bug"></i>
 Report bug

Soitinstead looks like this:

<i class="fa fa-bug"></i>
 Report bug

Add the collectjs package to the project so that you can easily work with arrays and
objects.

Books page

We gave you some homework from the Home.vue page for this next part, which is for
Books . vue and the rest of the listings pages. We hope you have managed to create “data-

Books page

objects” for the books on this page, and here is a small snippet of how this looks. For the
complete code check the books github repo.

data() {
return {
books: [
{
name: "TensorFlow For Machine Intelligence",
price: "$22.99",
pageCount: 270,
ISBN: "9781939902351",
coverImage: "../assets/images/tensorflow.jpg" ,
publishDate: 2017,

name: "Docker in Production",
price: "$22.99",

pageCount: 156,

ISBN: "9781939902184",

coverImage: "../assets/images/docker.jpg" ,
publishDate: 2015,
}s
1,
allBooks: []

}
}

The book’s page has some simple functionality for filtering and sorting the books on the
page. For simplicity sake, you will have two arrays of books in the data-object to start with:
books and allBooks. The latter is just the original array of books you started with when the
page loads.

Next, add the collect.js package to the project so that you can easily work with arrays
and objects. If you have ever worked with the Laravel PHP-framework, you will be very fa-
miliar with this package. It is almost an exact JavaScript port of Laravel’s Collections.

Sorting books

Sorting the books is really easy, but let’s start with importing the collect. js package at
the top of your <script> block.

import Collect from "collect.js";

There needs to be a way to keep tabs on when a change is made on the select drop-
down. With Vue, it is very simple to add event listeners right in your HTML either with the

attribute or with shorthand: @event="".

v-on:event=

137

138

CHAPTER 11: Using Bulma with VueJS

So let’s change the select element to look like the snippet below:

<select @change="sortBooks">
<option value="publishDate" >Publish date</option>
<option value="price">Price</option>
<option value="pageCount">Page count</option>
</select>

Notice that we also added explicit value attributes to all the options.

The next step is to create the sortBooks method and sort the books. Inside the method,
use collect. js and the sortBy(key) method, which simply sorts the collection by the
given key.

First, save the currently selected options value in a new variable: let selectValue
= String(event.target.value);

Next, transform the books array into a Collection, so that the package can do its magic
with the objects. Then create a new collection with the sorted books and finally set that as
our books array. Here is the complete sortBooks method:

sortBooks (event) {
let selectValue = String(event.target.value);
let collection = Collect(this.books);
let sortedBooks = collection.sortBy(selectValue);

this.books = Object.assign([], sortedBooks.all());
s

Filtering books

Now that you have the sorting out of the way, let’s see if we can make the filtering/search-
ing just as simple.

And yes, it is even simplier than our sorting above. Let’s start with adding event han-
dlers to the Search button and to the <input> field itself, which will trigger on keyup to
make it seem more “active”. The <input> field will also require a v-model attribute for da-
ta binding.

<p class="control">
<input class="input" type="text" placeholder="Book name, ISBN.."
v-model="searchWord" v-on:keyup="searchBooks" >
</p>
<p class="control">
<button class="button" @click="searchBooks">Search</button>

</p>

The search button click and keyup will trigger the same method, which does the filter-
ing. One caveat here to keep in mind is that this will change the casing of both the search-

Books page

Word and the bookname, so that your filtersearch will be somewhat case-insensitve.
Besides that, it will run the books array through a Vanilla JS filter() method and return
the books, which name includes the searchWord method.

searchBooks () {
if (!this.searchWord) {
this.books = Object.assign([], this.allBooks);
} else {
this.books = this.books.filter((book) => {
return book.name.tolLowerCase().includes(this.searchWord.toLowerCase());
3)s
}
}

Also don’t forget to add the searchWord to the data object.

data() {
coverImage: "../assets/images/qulp.ijpg" ,
publishDate: 2014,
}s
1,
searchWord: "",
}

Creating and editing a book

The final part of the books pages is creating a new book and editing the ones in the list.
Again, the focus of this book is Bulma and not VueJsS, so this will be a brief and simple ex-
planation on how to do it. Implement a modal on the page. This modal will will open a
form so the user can add a new book. This modal could also be used to edit a book as well.
This chapter won’t go over that. However, if you want to add that functionality yourself, go
for it! There is an empty method for this with some notes to get you started.

ADD A NEW BOOK

To start you shoud copy the ModalCard code from Bulma and add to the <template> part
before the last closing </div>. Inside the <div class="modal-card-body">, paste the
<form></form> from the new-book.html page. Now you should have the base HTML
ready to go.

Start by making sure you can open up the modal. To make a Bulma modal visible, it
needs the is-acitve" modifier class. At this point, the modal only has the modal on it as
it should, because you don’t want it to display all of the time. There are two main ways to

139

140

CHAPTER 11: Using Bulma with VueJS

show/hide this modal with Vue. The first is to just include the is-active class on the mo-

dal by default and show/hide it by toggling the elements v-show="" orv-if="" attribute.
The v-if method might be preferable here because it will remove the markup from the

DOM when it is set to false. But let’s do it another way by toggling the is-active class
itself. On the modal wrapper, change the code to the following:

<div class="modal" :class="{'is-active': showNewModal}" >

What is happening here is that we are using Vue’s v-bind: directive and hooking it into
the class attribute. When showNewModal is true, the is-active class is added to the mo-
dal div. Now set the showNewModal variable in your data object with a default value of

false: showNewModal: false. Then add a click event on the new book button. You
should now be able to open the modal by clicking the green “New Book” button.

<a class="button 1is-success" @click="showNewModal = true" sNew

So | guess you noticed that there is one tiny little problem--there’s no way to close the
modal, so let’s fix that. There should be a div with n class of .modal-background on the
line after your opening tag for the modal, which is the black background of the modal com-
ponent. This is a great place to add a second click-event to close out the modal.

You can do this:

<div class="modal-background" @click="showNewModal = false"></div>

The problem with this is that it will not clear the fields. Instead, you should have a re-

setNewBookForm() method. You’ll create this soon, so for now, let’s just change the code
to:

<div class="modal-background" @click="resetNewBookForm"></div>
And inside the methods: object, create this method to close the modal:

resetNewBookForm () {
this.showNewModal = false;

}

Now that you have that in place, let’s focus on the input and saving the new book. Again
let’s use use v-model to get the value bound to the data. Let’s create a new empty data
objectvariable: book: {}.

On each <input> element on the form, add a v-model="[input-variable]" . Where
[input-variable] corresponds to one of title, price, pageCount, and ISBN on the
book object. For publishDate and coverImage you should hard code these on the save-
Book() method, since we won’t be covering uploads in this book.

Books page

Each of the inputs should look something like this:

<input class="input" type="number" placeholder="e.g. 22.99" value="" re-

quired v-model="book.price">z

At the bottom of the form, remove the save and clear buttons, using the ones on the
modal.
Here is the finished modal footer:

<footer class="modal-card-foot" >
<button class="button is-success" type="button"
@click="saveBook">Save Book</button>
<button class="button" type="cancel">Cancel</button>
</footer>

The final thing to do is set the static variables as mentioned above, and then use the
array push() method to add the new book object to the book array(s). Yes it is plural, be-
cause we want to add it to both the “original” array of books, allBooks, and the one cur-
rently in view, books.

saveBook () {
this.book.publishDate = "2017";
this.book.coverImage = "../assets/images/newbook.jpg" ;

this.allBooks.push(this.book);
this.books .push(this.book);

this.resetNewBookForm();

3

And now if you try adding a new book you should see it appear on the page.

REMOVE A BOOK

To remove a book, just remove it from the arrays of book objects.

First, add the click-event to the .delete link. You’ll pass along the books index in the
array: <a @click="removeBook(index)">Delete. Then create the removeBook()
method inside it, simply by splicing the books array from the index.

removeBook (index) {
this.books.splice(index, 1)

3

141

142

CHAPTER 11: Using Bulma with VueJS

Note: In a fully fledged application, you should extract the modal into it’s own compo-
nent to be re-used across your application. Switching the content inside a modal can be

done, for example, with Vue’s <slot>.

Summary

That wraps up this chapter on integrating Bulma with VueJS. As mentioned in the begin-
ning, there are some snippets of the code up on GitHub where you can start to implement
the editing form for a book. You can either create a new edit-book page or use a modal like
we did here to add a new book.

The next chapter covers using Bulma with React.

Using Bulma with React

In this chapter, you will be integrating Bulma with React. React is a popular JavaScript
framework created by Facebook to create user interfaces.

React Documentation: https://reactjs.org

Before you dive too deep into this chapter, we should go over some of the prerequisites
and expectations. You should have some basic knowledge of JavaScript (ES6), React (or
React Native), Create React App (React CLI), React Router, and NPM or Yarn (Facebook’s
package manager). For this chapter however, we will be using NPM.

What you will be making

In this chapter you will be making a collection browser for Bleeding Edge Press. For this
app, users will be able to login with an email and password, view a collection of books and
view book details.

Note: This chapter will also use React best practices and best practice naming conven-
tions. It’s worth nothing that this chapter will not be using state management with Redux
or tips of server side rendering. Instead it will focus more on the user interface.

Overall, it is a pretty simple application. By the end of this chapter, you should know
how to properly integrate Bulma with React and leverage the Bulma library to create your
application’s user interface.

Installing “Create React App”

Much like Angular and VuelJS, React also has it’s own CLI; it’s called Create-React-App. Be-
fore we start creating our interface with Bulma, you’ll need to jump start the React applica-
tion by running a few commands.

npm install -g create-react-app
create-react-app <project-name>

143

144

CHAPTER 12: Using Bulma with React

cd <project-name>
npm start

Alocal server will start and your React app willinitialize.

Quick overview of Create-React-App

Create-React-App already does all of the hard work of setting up a development environ-
ment for you. From here, you just need to create the components and stylesheets (if any).

For this chapter, we’re going to keep all components and their children in their own di-
rectory.

src/
- components/
- Login/
- Login.jsx
- LoginForm. jsx
- styles/ (if any)
- Login.css

Login. jsx will act as the container with LoginForm. jsx nested inside it. Setting up
the components this way will let you move or add your login form anywhere in the applica-
tion.

The app structure

You are going to be renaming some files, creating directories for your assets, and creating
directories for your components. At a very high level, your directory structure inside the
src folder should resemble this...

src/
- assets/
- actions/
- components/
- ComponentName/
- ComponentName. jsx
- ComponentNameChild. jsx
- ComponentNameOtherChild. jsx
- styles/
- ComponentName.css
- App.css
- App.]Js
- App.test.js
- index.js

Installing Bulma

- index.css
- registerServiceWorker.js

Installing Bulma

There are a few ways that you can initialize Bulma inside the React app. You can certainly

add it to your index.html file inside the _public/ directory, or...you can add it via NPM
and import it with ES6.

Note: You will want to add Bulma globally to refer to it once and use it throughout the
entire application.

Option 1: Adding Bulma via a CDN

After Create-React-App is done installing, start the application with npm start and open
the files in a text editor. In your project structure, you will see a public/ directory. Navi-

gate to the public/ directory and open the index.html file.
You can remove the pre-rendered comments if you’d like, but these aren’t too impor-
tant.

Inside the <head>, add Bulma via a CDN just like any other stylesheet in a website.

<link href="https://cdnjs.cloudflare.com/ajax/libs/bulma/0.6.2/css/
bulma.min.css" rel="stylesheet">

Option 2: Adding Bulma via NPM

This is the recommended way of adding Bulma, since it’s considered best practice to im-
port React dependencies with JavaScript.

After Create-React-App is done installing, start the application with npm start and open
the files in a text editor.

To install Bulma via NPM run...

npm install bulma --save

Let’s open up the index. js file inside our main src/ directory and add the following
with the rest of the import statements...

import './../node_modules/bulma/css/bulma.css' ;

That’s it. You can start using Bulma in your JSX!

145

146

CHAPTER 12: Using Bulma with React

Routing with React Router 4

This example application is using React Router 4, which allows you to visit different ren-
dered components based on the URL. This chapter will briefly go over the basics of React
Router 4. However, it’s strongly recommended to check out their documentation.

React Router 4 Documentation: https://reacttraining.com/react-router/ .

First, you’ll want to install React Router 4 with the following command:

npm install react-router-dom --save

Next, import two specific components of react-router-dom and those are Browser -
Router and Route. You can do that with an ES6 import statement in your App. js file.

import { BrowserRouter, Route } from 'react-router-dom';

Next, import your components that you will create. You can actually import these later
once you create them. If you import them before, you’ll get an error. Just be sure to refer-
ence this section later when you’re ready to tie routes to components.

BrowserRouter

<BrowserRouter> is a wrapper for each <Route>. Think of BrowserRouter as a compo-
nent itself that get’s it’s “child” component injected into when a certain condition is met
like, let’s say...a URL address?

Like all other components, <BrowserRouter> needs a single root element. You will get
an error if you try to place many routes in there. So, you’ll need to follow it directly with a
<div>.

At this point, your JSX should look something like this:

<BrowserRouter>
<div>
{/* Routes will go here */}
</div>
</BrowserRouter>

Route

Inside your single <div>, you should add a <Route>. Remember, <Route> is a component
that was imported with React Router 4. The basic structure of a route is:

<Route exact path="/" component={Login} />

Creating the Login component

At some point in this chapter, we will be creating a dynamic route. Dynamic routes have
variables that you can add to the route in order to assign a unique route to a component
with unique data.

Variables in dynamic routes begin with a colon : followed by the variable name like, id.

Final App.js With Routes

import React, { Component } from 'react';
import { BrowserRouter, Route } from 'react-router-dom' ;
import './App.css';

// Import Components for Routes

import Login from './Login/Login';

import Collection from './Collection/Collection’ ;

import CollectionSingleBookDetail from './Collection/CollectionSingleBookDe-
tail';

class App extends Component {
render () {
return (
<BrowserRouter >
<div>
<Route exact path="/" component={Login} />
<Route exact path="/collection" component={Collection} />
<Route name="collectionDetail" path="/collection/:1d" compo-
nent={CollectionSingleBookDetail } />
</div>
</BrowserRouter>
)
}
}

export default App;

Creating the Login component

Let’s create a folder and name it “Login.” As stated above, this folder will contain all of our
component’s code. Inside this folder, let’s create a JSX file and name it “Login.jsx”.

This Login. jsx will act as a container and will do nothing but “contain” the child com-
ponents. On this level, you can control the overall layout of the component. You want to
keep Ul layout separate from the child components. If it’s confusing now, don’t worry, it’ll
make more sense soon.

147

148

CHAPTER 12: Using Bulma with React
Login.jsx

Remember, Bulma was added globally into the index. js file earlier. So you don’t need to
add it again, so let’s create the first React component with Bulma.

CREATING THE LOGIN FORM CONTAINER

First, create the user interface that contains the form. Remember, you should keep the ac-

tual form separate from the Login component. That way you can reuse the form itself any-
where in the web application if you choose to do so.

For every new component we want to import a few things into it using ES6 and then
render our component. All of our JSX will be written inside the component that extends
Component.

import React, { Component } from 'react';

class Login extends Component {
render () {
return (
{/* JSX Goes Here */}
)
}
}

export default Login;

Bulma has some nice utility classes out-of-the-box that you can leverage to create that
full height “green” background. In order to achieve that, you’ll want to create a single ele-
ment and assign it a few classes: a base class and two modifiers.

Tip: Modifier classes in Bulma begin with is- or has-.

Those classes are:

+ hero: Defines a large area for hero images or important information.

« is-primary: Adds the primary background color. In Bulma, the primary color is the
green color we want.

« is-fullheight: Applies a minimum height of 100% of the viewport’s height.
<section className="hero is-primary 1is-fullheight">
</section>

Your browser window should be completely green. However, if you add some arbitrary
content, you’ll notice that it’s not vertically aligned. Luckily, there’s a Bulma class that does

this, specifically used in tandem with the hero class, and that is hero-body.

Creating the Login component

<section className="hero is-primary is-fullheight" >
<div className="hero-body">
<p>I am generic text.</p>
</div>
</section>

If you add some generic text now, you’ll notice that your text is now vertically centered!
You still need to add a few more lines of JSX with Bulma classes to achieve the container’s
desired user interface.

<section className="hero is-primary 1is-fullheight">
<div className="hero-body" >
<div className="container">
<div className="columns 1is-centered">
<div className="column is-5-tablet is-4-desktop is-3-widescreen" >
{/* Our form code goes here */}
<p>I am generic text.</p>
</div>
</div>
</div>
</div>
</section>

« container: Contains the child elements in a pre-defined width.

« columns: The “row” that contains our individual columns.

« is-5-tablet: Columnis 5/12 columns wide on tablet devices.

« 1s-4 desktop: Column is 4/12 columns wide of desktop devices.

+ is-3-widescreen: Column is 3/12 columns wide on larger, widescreen devices.

FINAL LOGIN.JSX

import React, { Component } from 'react';

class Login extends Component {
render () {
return (
<section className="hero is-primary 1is-fullheight" >
<div className="hero-body" >
<div className="container">
<div className="columns 1is-centered">
<div className="column is-5-tablet is-4-desktop is-3-
widescreen" >
<p>I am generic text.</p>
</div>
</div>
</div>

149

150

CHAPTER 12: Using Bulma with React

</div>
</section>
)
}
}

export default Login;

Creating the Login form

Now that the container is complete, let’s create the login form itself. This LoginForm. jsx
component will be imported into Login. jsx as a child component.
LoginForm. jsx

import React, { Component } from 'react';
import Logo from './../../assets/logo-bis.png' ; {/* Logo Image */}

class LoginForm extends Component {
render () {
return (
{/* JSX Goes Here */}
)
}
}

export default LoginForm;

Most of this JSX is standard form inputs and checkboxes. Let’s add this JSX into your
return statementin the LoginFormcomponent.

Every form needs a few things, but most importantly, the <form> element. This form
element will be our single root element in this example. We’re going to give it a Bulma class

of box. What box does is adds a white background with a slight drop shadow to our form.

<form className="box">
</div>

Next, add the logo. If you haven’t already, import the logo with an ES6 import state-
ment. The image will be wrapped with some Bulma classes to a <div> so it can be cen-
tered at the top of the form. The Bulma class, has-text-centered does just that.

<div className="field has-text-centered" >

</div>

Creating the Login component

From here, it’s just a matter of creating the rest of the form inputs for the email and
password fields as well as the submit button. As you can probably guess, we are going to
be leveraging Bulma for our input fields.

<div className="field">
<label className="1label">Email</label>
<div className="control has-icons-left">
<input className="input" type="email" placeholder="e.g. dave@parsecdigi-
tal.i0" required/>

<l className="fa fa-envelope"></i>

</div>
</div>

You’ll notice a few extra classes like Label, has-icons-left, is-small, and is-left.
These are used to get the styling of our form consistent. More importantly though, has-
icons-left tells the form input that it is supposed to have icons to the left of the input.
So, with that class, Bulma adds some padding to leave room for an icon.

Note: This form is using Font Awesome, which are text SVG icons. As the name suggests,
it’s pretty awesome. You should definitely check out their documentation.

Font Awesome Documentation: http://fontawesome.io/

<form className="box">
<div className="field has-text-centered" s

</div>
<div className="field">
<label className="1label">Email</1label>
<div className="control has-icons-left">
<input className="input" type="email" placeholder="e.g. dave@parsecdi-
gital.i0" required/>

<1 className="fa fa-envelope"></1>

</div>
</div>
<div className="field">
<label className="label">Password</label>
<div className="control has-icons-left">
<input className="1input" type="password" placeholder="#***¥***" re-
quired/>

<i className="fa fa-lock"s></i>

</div>
</div>

151

152

CHAPTER 12: Using Bulma with React

<div className="field">
<label className="checkbox">
<input type="checkbox" required/>
Remember me
</label>
</div>
<div className="field">
<button className="button is-success">
Login
</button>
</div>
</form>

+ box: Adds a white box to contain child elements.

« field: Contains <form> elements for consistent spacing.

« control: Aform input container.

+ has-icons-left: Adds padding to left of input field to allow room for an icon.
« input: Styling for form inputs.

+ is-small: Modifier that decreases the size of the element.

« i1s-left: Aligns theicon to the left.

« checkbox: Styling for form checkboxes.

Note: It’s worth noting that we are not going to be adding validation or a form handler
to this form. This section is to illustrate how easy it is to create a web form with Bulma.
Optional: Feel free to add validation and a form handler. Write a function that redirects

the user to the /collections route when submitted correctly.

FINAL LOGINFORM.JSX COMPONENT

import React, { Component } from 'react';

class LoginForm extends Component {
render () {
return (
<form className="box">
<div className="f1eld has-text-centered" >

</div>
<div className="field">
<label className="1label">Email</label>
<div className="control has-icons-left">
<input className="1input" type="email" placeholder="e.g. dave@par-
secdigital.io" required/>

<1 className="fa fa-envelope"></1>

Creatingthe collection

</div>
</div>
<div className="field">
<label className="1label">Password</label>
<div className="control has-icons-left">
<input className="1input" type="password" placeholder="+#%*%%#%¥*%"

required/>

<i className="fa fa-lock"></i>

</div>
</div>

<div className="f1ield">
<label className="checkbox">
<input type="checkbox" required/>
Remember me
</1label>
</div>
<div className="field">
<button className="button is-success">
Login
</button>
</div>
</form>
)
}
}

export default LoginForm;

After your form is complete, import it into your Login. jsx component with import
LoginForm from './LoginForm.jsx'; and replace your generic text with <Login-
Form />.

You can further enhance this form on your own with validation, and by routing the Col-
lections component when valid.

Creating the collection

Once you “login”, you’ll be “redirected” to a collections view. This collection is the meat-
and-potatoes of this chapter’s example. The collection will display various Bleeding Edge
book covers. Users can click on a cover and get routed to a “details” component where they
cab “buy” or “share” the book.

153

154

CHAPTER 12: Using Bulma with React

o BLesvino Evce Persy Putisnang ot the spoed ol motnotogy Dave Beming

Your Collection

B Blrmine Evsr Peesy BLeeviwe Enoe Perss

st e

LOPING AN

BUILDING DEVELOPINGA
VOICE-ENABLED ELECTRON REDUX
APPS WITH eCOMMERCE 5) (35
ALEXA e ™ L I ot B o
rs AN

i o) \) -
L7 s\ 'r
P TR
W S : <
M S = ,
NS NS
- -t | \

v

IR o !
e Laavpe . AR1| Pt han A b
Oamw Crwvora, pow Erwbief Dvenin s

Adyw Lgery anw e Oopler

BLELDING Ebee Persy

TP BLERDias Bis PRETT DIk Epcd Pues
eveloping a TENSORFLOW DEVELOPING A
peactd Eage FOR MACHINE GULP

e INTELLIGENCE rJI— (2sr4
BRI mmm I=DGe

The Header

Every web application needs a header. As you’ve probably guessed, Bulma has classes that
we can use that make this very easy.
You’re final header should look something to this when done:

¥ BLEmikic ok PRSTT Pubsering i the xpwed ol hashrdegy Deve Baming

Create your Header. jsx component and place the JSX file in the src/components/
Header/ directory. This Header component will be the header “container”.

Header.jsx

The base element for this component will be <headers>. Inside that <header> will be a
<nav> with some Bulma classes.

<header>
<nav>

</nav>
</header>

Creatingthe collection

This header is great so far, but we want some separation between it and the rest of the
webpage. So, add the has-shadow class to the <nav> to add a slightly drop shadow. You
should also add the navbar class to add the default nav bar styles in Bulma.

Your headers JSX should resemble this. Don’t worry about the HeaderBrand and
HeaderUserControls . You’ll make those soon.

Next, it’s time to add the JSX for the nav bar itself. As you can see, navbar-menu is
needed for the navigation bar especially for the desktop. The reason is that if you want to
show a navigation bar on desktop, but not mobile, use the navbar -menu class.

Navbar-startis used for the left section of the navigation bar. Navbar-item is used to
define each single item in the navigation bar.

<div className="navbar-menu" >
<div className="navbar-start">
<div className="navbar-item" >
<small>Publishing at the speed of technology </small>
</div>
</div>
</div>

FINALHEADER.JSX

import React, { Component } from 'react';
import HeaderBrand from './HeaderBrand';
import HeaderUserControls from './HeaderUserControls' ;

class Header extends Component {
render () {
return (
<header>
<nav className="navbar has-shadow" >
<HeaderBrand />

<div className="navbar-menu" >
<div className="navbar-start">
<div className="navbar-item" >
<small>Publishing at the speed of technology</small>
</div>
</div>
<HeaderUserControls />
</div>
</nav>
</header>
)
}
}

export default Header;

155

156

CHAPTER 12: Using Bulma with React

« navbar: Full width, responsive vertical navigation bar with a structure; the main con-
tainer.

« has-shadow: Modifier that adds a box-shadow to the element.

« navbar-start: The left part of the menu, which appears next to the navbar brand
on desktop.

+ navbar-1item: Each single item of the navbar, which can either be an aoradiv.

HeaderBrand.jsx

HeaderBrand is a child component of Header and is used for our branding, including the
logo!

Create a new file and name it HeaderBrand. jsx, placing it inside your src/compo-
nents/Header directory. Once you import React, make sure you import the logo as a com-
ponent dependency.

Our base element is going to be a <div> with some Bulma clases attached to it.

You should wrap your logo image with navbar-item and navbar-brand, as shown be-
low. The class, navbar-brand is used because it is always visible across all devices. This
classis typically used for branding, like for logos or mottos.

<div className="navbar-brand" >

</div>

Next in this component, create the mobile navigation icon for mobile devices. Bulma
makes this very easy. Create three tags and wrap those in navbar-burger and
burger.

<div className="navbar-burger burger">

</div>

Hamburger icons have never been so easy!

FINALHEADERBRAND.JSX

import React, { Component } from 'react';
import Logo from './../../assets/logo.png' ;

class HeaderBrand extends Component {

Creatingthe collection

render () {
return (
<div className="navbar-brand" >

<div className="navbar-burger burger">

</div>
</div>
)
}
}

export default HeaderBrand;

« navbar-brand: Always visible and usually contains the logo and optionally some
links oricons.

« navbar-burger: The hamburger icon, which toggles the navbar menu on touch de-
vices.

« burger: We wish. Jokes aside, this is a container that contains the three tags
that’ll render a hamburger, mobile navigation icon.

HeaderUserControls.jsx

HeaderUserControls.jsx is our final component for the header. This is just a simple
dropdown with additional links for things like “Profile” and “Sign Out”. Create a new file

and name it HeaderUserControls. jsx inside of our src/components/Header directo-
ry. The base element of this component is going to be a <div>.

<div className="navbar-end" >
</div>

Navbar-end is used because this will be at the end or the right of our navigation bar.
Add a nest <div> inside of it and assign the Bulma classes has-dropdown and is-
hoverable. You can probably already guess what these modifiers do. It makes it easy to
create a dropdown that displays on hover.

<div className="navbar-end" >
<div className="navbar-item has-dropdown is-hoverable" >
<div className="navbar-link">
Dave Berning

157

158

CHAPTER 12: Using Bulma with React

</div>
</div>
</div>

As you can see, this a great but there is no dropdown. So you’ll need to create that next.
Your dropdown menu should always be wrapped in the navbar-dropdown class. With
each dropdown item, make sure you wrap them with the navbar-itemclass.

<div className="navbar-dropdown" >

<div>

<i className="fa fa-user-circle-o"></i>

Profile
</div>

<div>

<l className="fa fa-bug"></i>

Report bug
</div>
<[a>

<div>

<i className="fa fa-sign-out"></i>

Sign Out
</div>

</div>

The JSX for the dropdown should be under the navbar-1link with user’s name. In this
case, “Dave Berning.”

+ navbar-end: The right part of the menu, which appears at the end of the navbar.

« i1s-hoverable: The dropdown will show up when hovering the parent navbar -
item.

« navbar - link: Alink as the sibling of a dropdown, with an arrow.

FINAL HEADERUSERCONTROLS.JSX

Your final HeaderUserControls component should look similar to this:

import React, { Component } from 'react';

class HeaderUserControls extends Component {
render () {
return (
<div className="navbar-end">
<div className="navbar-item has-dropdown is-hoverable
<div className="navbar-1link" >
Dave Berning
</div>
<div className="navbar-dropdown" >

<div>

<1 className="fa fa-user-circle-o0"></1>

Profile
</div>

<div>

<1 className="fa fa-bug"></i>

Report bug
</div>

<div>

<1 className="fa fa-sign-out"></i>

Sign Out
</div>

</div>
</div>
</div>
)
}
}

export default HeaderUserControls ;

Creatingthe collection

||>

159

160

CHAPTER 12: Using Bulma with React

Putting the header together

Now that you have your header child components done, it’s time to import them into

Header. jsx. Your final header should resemble something like this:

import React, { Component } from 'react';
import HeaderBrand from './HeaderBrand';
import HeaderUserControls from './HeaderUserControls' ;

class Header extends Component {
render () {
return (
<header>
<nav className="navbar has-shadow" >
<HeaderBrand />

<div className="navbar-menu" >
<div className="navbar-start">
<div className="navbar-item" >
<small>Publishing at the speed of technology</small>
</div>
</div>
<HeaderUserControls />
</div>
</nav>
</header>
)
}
}

export default Header;

Footer.jsx

The Footer is a much simpler component than the header. However, you can certainly try
out your new Bulma skills and add additional columns, images, text, and a footer naviga-

tion bar.

Create a new JSX file and name it Footer. jsx, placing it into the src/Footer/ direc-

tory.
Your JSXfor this is very simple:

<footer className="footer"s>

<p className="has-text-centered" >Copyright © 2018. ALl Rights Re-
served</p>
</footer>

The book collection body

« footer: Used for footers. You can have any element, list, orimage in this element.

« has-text-centered: Center aligns text.

You have your footer already constructed. Later, you’llimport the header and footer into
the collections and collections detail components.
Your final footer component should resemble this:

import React, { Component } from 'react';

class Footer extends Component {
render() {
return (
<footer className="footer">
<p className="has-text-centered" >Copyright © 2018. All Rights
Reserved</p>
</footer>
)
}
}

export default Footer;

The book collection body

This body will control the layout of the collection as well as iterate through data and render
a single component that you’ll pass data into. For this section, the data is coming from a
JSON file with generic data called, books. json in the src/data directory.

The data object looks something like this:

{
"id": 5,
"name": "Developing a React.js Edge",
"cover": "react-edge.jpg",
"author": "Richard Feldman, Frankie Bagnardi, & Simon Hojberg" ,
"details": "Lorem ipsum dolor sit amet..."
}

Create a JSX file called Collection.jsx and place it into the src/components/
Collection/ directory. This component will act as our container and contain all child
components. The base element in this component is going to be a <div>. Nested inside of

that base <div> is going to be another with the class of container. This container class
is used to “contain” our content in a fixed width and be centered.

161

162

CHAPTER 12: Using Bulma with React

Collection.jsx

<div>
<div className="container">

</div>
</div>

Next, add some JSX to fill in the component. The end goal of this component is to show
all of the book covers with one single component. To achieve this, we want to loop through
data, pass props down, and write corresponding JSX with Bulma to achieve this. Create a
<div> with the class of columns. Following that columns <div> there should be another

<div> with the class of column. This of course is the base of Bulma, which was discussed
in other chapters.

You want to iterate through that data and the container CollectionSingleBook com-
ponent with a column that is 3/12 columns wide. When referencing the CollectionSin-
gleBook component, make sure you pass down you data via props.

<h1l className="title is-2">Your Collection</h1>
{/* Iterates through data (books) */}
<div className="columns is-multiline">
{this.state.books.map ((book) => (
<div className="column is-3">
<CollectionSingleBook key={book.id} book={book} /> { /* Creating this
soon! */ }
</div>
)}

</div>
FINAL COLLECTION.JSX

import React, { Component } from 'react';

import Header from './../Header/Header'

import Footer from './../Footer/Footer' ;

import CollectionSingleBook from './CollectionSingleBook' ;
import BookData from './../../data/books.json' ;

import styles from './styles/Collection.css' ;

class Collection extends Component {
constructor () {
super();
this.state = {
books: BookData
s
}

render () {

The book collection body

return (
<div>
<Header />
<div className="container has-gutter-top-bottom" >
<h1 className="title is-2">Your Collection</h1>
{/* Iterates through data (books) */}
<div className="columns is-multiline">
{this.state.books.map((book) => (
<div className="column is-3">
<CollectionSingleBook key={book.id} book={book} />
</div>
N}
</div>
</div>
<Footer />
</div>
)
}
}

export default Collection;

« title: Defines atitle (much like an <h1>)
« is-2:Based on a 12 column layout. Elementis 2/12 columns wide.

« is-multiline: Definesthe columns row to wrap column items. Wihout this, the col-
umns will repeat past it’s container without wrapping.

« is-3:Based on a 12 column layout. Elementis 3/12 columns wide.

CollectionSingleBook.jsx

This is a smaller component. CollectionSingleBook. jsx is simply going to be our book
cover with a link to the detail component. This component really illustrates why you should
break up components into small, digestible bits.

To elaborate, the CollectionSingleBook component is restricting the size of the cov-

er to a third of the browser window, or in this case, the container. With no size restriction
on the single book itself, you can add it anywhere and control the size using other parent
components.

Note: Link is part of React Router 4. Import it with import { Link, withRouter}

from 'react-router-dom’;

<div>
<Link to={{pathname: °/collection/${this.props.book.id} ', state: { single-
Book: this.props.book }}}>

163

CHAPTER 12: Using Bulma with React

</Link>
</div>

In this component, you are simply constructing the dynamic link and passing a single
“book” object down via props to the next component the CollectionSingleBookDe-
tail. jsx.

FINAL COLLECTIONSINGLEBOOK.JSX

import React, { Component } from 'react';
import { Link, withRouter} from 'react-router-dom';

class CollectionSingleBook extends Component {
render () {
return (
<div>
<Link to={{pathname: °/collection/${this.props.book.id} , state:
{ singleBook: this.props.book }}}><img src={require("./../../assets/" +
this.props.book.cover)}/></Link>
</div>
)
}
}

export default CollectionSingleBook ;

CollectionSingleBookDetail.jsx

This is a dynamic component. Meaning, the route is always different but uses the same
component. The route is what defines which data gets passed down to this. You access this
component by clicking on the CollectionSingleBook. jsx . We are using the book’s id to
determine which book info get’s loaded into this component.

This component’s layout is pretty simple; it’s two columns. The left column is nothing
but the book cover while the right is nothing but information about the book as well as a
nested columns row for the “share” and “buy” buttons. Make sure your add the contain-
er class to the wrapper <div> so it restricts the content to a fixed width and centers it.

When you see singleBook, it is referencing the data directly via props from Collec-
tion. jsx. The left column needs to have the is-one-third modifier class. You need to
restrict the width of that column to a certain size otherwise the cover image will be way too
large. After that left column, the other sibling columns automatically adjust their size.

<div className="container">
<div className="columns">
<div className="column">
<h1l className="title is-2">{singleBook.name}</h1>

164

The book collection body

<p>By: {singleBook.author}</p>
</div>
</div>
<div className="columns">
<div className="column 1is-one-third">

</div>
<div className="column">
<p>{singleBook.details} </p>

<div className="columns">
<div className="column">
<button className="button is-primary is-large is-fullwidth" >Buy
Book</button>
</div>
<div className="column">
<button className="button is-secondary is-large is-
fullwidth" >Share Book</button>
</div>
</div>
</div>
</div>
</div>

Your final component should resemble something similar to this:

import React, { Component } from 'react';
import Header from './../Header/Header' ;
import Footer from './../Footer/Footer' ;

class CollectionSingleBookDetail extends Component {
render () {
const singleBook = this.props.location.state.singleBook; { /* just mak-
ing our JSX easier to read. This is optional. */}

return (
<div>
<div className="container">
<div className="columns" >
<div className="column">
<h1 className="title is-2">{singleBook.name}</h1>
<p>By: {singleBook.author}</p>
</div>
</div>
<div className="columns" >
<div className="column is-one-third">

</div>
<div className="column">

165

CHAPTER 12: Using Bulma with React

<p>{singleBook .details}</p>

<div className="columns" >
<div className="column">
<button className="button is-primary is-large is-
fullwidth" >Buy Book</button>
</div>
<div className="column">
<button className="button is-secondary is-large is-
fullwidth" >Share Book</button>
</div>
</div>
</div>
</div>
</div>
</div>
)
}
}

export default CollectionSingleBookDetail ;

« title: Adds heading styles to text.
+ 1s-2: Different size of the . title. Comparable to a <h2>.

« 1s-one-third: Defines the column to be one-third of the container. Other columns
fillin the rest of the space.

« is-secondary: Uses the secondary color for the <button>.
« is-large: Increases the size of the button to a larger size.
+ is-fullwidth: Makes the <button> 100% width.

Tying the Collections Component Together

Now that you have all of the collection components completed, you should start importing
the headers and footers into your Collection. jsx component.

import Header from './../Header/Header'; import Footer from './../
Footer/Footer';

In your Collections.jsx and CollectionSingleBookDetail.jsx components,

add <Header /> and <Footer /> above and below the .container respectively.
Your final code should resemble the following;:
Collections.jsx (Container)

import React, { Component } from 'react';
import Header from './../Header/Header'
import Footer from './../Footer/Footer' ;

166

Running the application

import CollectionSingleBook from './CollectionSingleBook' ;
import BookData from './../../data/books.json' ;

class Collection extends Component {
constructor () {
super();
this.state = {
books: BookData
}s
}

render () {
return (
<div>
<Header />
<div className="container has-gutter-top-bottom" >
<h1 className="title is-2">Your Collection</h1>
{/* Iterates through data (books) */}
<div className="columns is-multiline">
{this.state.books.map((book) => (
<div className="column is-3">
<CollectionSingleBook key={book.id} book={book} />
</div>
N}
</div>
</div>
<Footer />
</div>
)
}
}

export default Collection;

Running the application

If you haven’t been building the example throughout this chapter, you should run the fol-
lowing command to build your project locally:

npm start

Assuming that it builds correctly, you should see the login screen! This form doesn’t
have any functionality, but to see the Collections component, you’ll need to navigate to it
via the URL bar with /collection.

You should see a grid of Bleeding Edge Book covers! From here, you can click on each
book cover and it’ll take you to /collection/<id>. Each one of these detail screens is a
single component that gets data passed into it.

167

168

CHAPTER 12: Using Bulma with React

Summary

Bulma is a powerful CSS framework that you can use in your next React project to quickly
prototype and or create it’s user interface. Since Bulma is built on Flexbox, some of these
concepts you can take with you if you decide to build a native mobile application with Re-
act Native!

You should now have a strong understanding on how to integrate Bulma with React and
why you might decide to use a specific Bulma CSS class in a specific case.

Follow along in the next and final chapter to learn how to customize Bulma.

Customizing Bulma

Bulma comes with default styles that are carefully chosen to satisfy most users, and ensure
that any interface built with Bulma looks great.

But even if the layout of the page is naturally balanced and the components are clear
enough to be used straight out of the box, you probably don’t want your website to end up
looking like every other Bulma instance. First, because you probably already have defined
colors and typography rules, which is especially true when you are using Bulma in a busi-
ness context, where branding guidelines have already been defined and need to be strictly
followed. Secondly, because no matter what the purpose of the website you’re building
with Bulma, you’ll still want to add your own personal touch. And one design can’t satisfy
everyone!

Luckily, Bulma is a CSS framework that is very easy to customize, and it can be done in
several ways:

Overriding Bulma’s initial and derived variables
Overriding Bulma’scomponentvariables
Adding your own variables

Overriding Bulma’s styles

o kWb E

Adding your own styles

To define your own customized interface, you need to follow at least one of these steps.

Have a look at the Bulma Expo, and you’ll see that Bulma is a tool that can be the solu-
tion to any type of design.

First, you need to set up Sass on your computer.

Setting up node-sass

Bulma is built with Sass, a CSS preprocessor. Although it’s originally written in Ruby (and
available as a Ruby gem), it’s recommended to use the faster C/C++ compiler LibSass.

Most developers actually use node-sass, which provides binding for Node.js to LibSass.
This is the library we’re going to use here.

You need to have NodeJS installed on your computer.

169

CHAPTER 13: Customizing Bulma

Creatingpackage.json

With your terminal, go to the folder where you’ve saved your HTML files (alongside
books.html, customers.html, etc.), and type the following:

npm init

Follow the instructions. This will create a package. json file.
Then type the following:

npm 1 bulma node-sass --save-dev
This will add the dev dependencies to your package. json:

"devDependencies" : {
Ilbulmall: "AO.G.Z" s
"node-sass": "74.7.2"

}

Right now, the list of scripts only has one called test, which simply echos an error mes-
sage and exits.
Replace that script with the following list:

"scripts": {

"build": "node-sass --output-style expanded --include-path=node_modules/
bulma sass/custom.scss css/custom.css" ,
"start": "npm run build -- --watch"

3

The most important script here is the build one: it takes the file sass/custom.scss as
an input, and creates the css/custom.css as the output.
The start script simply turns the build into a watch script.

Creating a sass/custom.scss file
So far, you’ve been importing the Bulma CSS via the CDN:

<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/bulma/
0.6.1/css/bulma.min.css" >

Since you want your own custom version, in all of your HTML files replace that <link>
tag with this new one:

<link rel="stylesheet" href="css/custom.css">

170

Setting up node-sass

The /css folder and the custom. css file don’t exist yet!
In the same directory as your package. json file, create a /css and a /sass folder. In
the latter, add a custom.scssfile.

While Bulma itself uses .sass files, most developers prefer the syntax .scss files be-
cause it’s easier to understand, hence why we’re using it here.

To see if your setup is working, write the following in custom. scss:

html {
background: red;

}

Then open up your terminal and run npm run build. You should see the following out-
put:

Rendering Complete, saving .css file...
Wrote CSS to /path/to/html/css/custom.css

Open up your page and you should see the following:

By using your own custom.css file:

+ You removed the Bulma styles
« You added your own styles

You can now remove this CSSrule so custom. scss is empty.

171

172

CHAPTER 13: Customizing Bulma

Importing Bulma

You have installed Bulma locally on your machine, but you are not using it yet.

Because you are going to update the .scss file quite frequently from now on, run npm
start instead: this will watch the file for changes.

In your empty custom.scss file, add:

@import "node_modules/bulma/bulma";

Save the file. Since a change in the file has occurred, you will see this output in the ter-
minal:

=> changed: /path/to/html/sass/custom.scss
Rendering Complete, saving .css file...
Wrote CSS to /path/to/html/css/custom.css

o Bisrsiec fras Posey Buslaring a1 the speco of 1ochrobegy Nex Johnson

Alex Johnson This fonth

2o

B Customars 232
A Orders

4] Ordoes

Latest orders Most popular books Most loyal customers
787362 $56.98 1 Learning 136 sold 1 John Miller 7 orders
Woy 18, 1704 try Jahn Wi o & Swift United States
289050 $22.89 = 5 Samantha Rogers 6 orders
Woy 16, 145 by Syvarara Soge 2 == TensorFlow 56 snid Unifed Kngdom
B | Formachine
a intelligen
918478 $22 99 ——— q Paul Jacques 2 ordars
h 12, 2157 Dy Simsan Jefliesen - = L Canana
3 = | Choosinga &7 sols
AN '; JavaScript View @l custhmens

Framework

Everything is back to normal. Instead of importing the generated .css file from the
CDN, you are importing the Sass version of Bulma into your custom. scss file, which then
generates the custom.css.

Since you haven’t made any changes yet, you can’t see any differences. The first step to
create your custom design is to import new font families.

Importing the Google fonts

Importing the Google fonts

The new design uses two Google fonts: Karla and Rubik. While it’s possible to import them
via a <link> tag, it’s easier to import them in a single location from your CSS file.
You import the fonts before importing Bulma. So at the top of custom. scss file, add:

@import url('https://fonts.googleapis.com/css?family=Karla:400,700|Rubik:
400,500,700"');

Since the fonts are a third-party dependency, it’s important to import them first.

Introducing your own variables

While Bulma uses a single font family, the new design uses two. You need to create a new
variable to store this second family.
After importing the fonts but before importing Bulma, add:

// New variables
$family-heading: "Rubik", BlinkMacSystemFont, -apple-system, "Helvetica",
"Arial", sans-serif;

Until further notice, you will have to add the new Sass snippets just before the @import
"node_modules/bulma/bulma”; line.

Rubik will be used as font for headings mainly. The other font families act as a fallback
in case Rubik doesn’t load.

The design will also heavily use a new type of shadow. Since it’s going to be re-used a
lot, it’s better to store it as a variable too:

$large-shadow: 0 10px 20px rgba(#000, 0.05);

Understanding Bulma’s variables

Bulma comes with three sets of variables:

« initialvariables are a collection of Sass variables that are assigned a literal value like
Sblue: hsl(217, 71%, 53%)

+ derived variables either reference an initial variable like $1ink: $blue,orusea
Sass function to determine their value like $green-invert: findColorIn-
vert($green)

« componentvariables are specific to each Bulma element or component, and refer-
ence either a previously defined variable, or a new literal

173

CHAPTER 13: Customizing Bulma

This can create a chain. For example:

« Ininitial-variables.sass, the color blue uses a literal value: $blue: hs1(217,
71%, 53%)

» Inderived-variables.sass, the $1link color uses that shade of blue: $1ink:
$blue

» Inbreadcrumb. sass, the breadcrumb items’ color use that link color:
Sbreadcrumb-item-color: $link

This provides Bulma users with a lot of flexibility in terms of customization:

+ You can update the $blue value and it will be reflected throughout the website

« Oryou canset $link: $green to update all links, and the breadcrumb items too

« Oryou can only choose to update the breadcrumb items to be red instead:
Sbreadcrumb-item-color: $red

+ Oryou can do both: make all links green, but have all breadcrumb items red

The purpose of this setup is to both:

« Make it easy to update a single value everywhere (since $blue is defined in a single
location)

« Still allow elements and components to be styled individually

Overriding Bulma’s initial variables

The new design comes with new brand colors, a second font Karla, and a bigger border ra-
dius. Using this new branding is straightforward: update their respective variables with
their new values, and the changes will be reflected throughout the website.

In custom. scss, write the following:

// Initial variables
$Sturquoise: #5dd52a;
$Sred: #D30012;
Syellow: #FFF200;
$green: #24D17D;
Sblue: #525adc;

$family-sans-serif : "Karla", BlinkMacSystemFont , -apple-system, "Helvetica",
"Arial", sans-serif;

$radius: 5px;

Remember to add this beforeimporting Bulma.

174

Overriding Bulma’s componentvariables

o Bisrsiec Evas Posey Fubitstyng wt the spewd of tashnalagy Ao Sahnsan

|- Alex Johnson

BT $7,648 1,678 20,756
e Orders Revenue Visitors- Pageviews

Latest orders Most popular books Most loyal customers
787352 $56.98 3 Learning 14% old ' John Millar
Niw 10, 1790 By Jern s IS TLL " Swift rded Grates
289050 $22.89 > Samantha
News 10, 114D by Shem wid b B0 m = TensorFlow 4 snin ' Rogers
’ u Far Machine Inited Kmgdom
918478 $22.09 Intelligence
Now 122357 by Dirvan el - 3 Paul Jacques 2 ocdors
5 -—-| Choosing 8 AT 50ld 3 Canaca
z | JavaScript

Framework

The colors have been updated, and the body font is now Karla.

All Bulma variables use the !'default flag. It’s a Sass feature that means a variable’s
value will be assigned a default value unless it has been assigned one before.

That’s why importing Bulma after having set the new variables still works, and the new
brand colors are preserved.

Overriding Bulma’s component variables

The new design has a slightly darker page background. This is defined in the gener-
ic.sass. Instead of writing a new CSS rule, you only need to update the appropriate vari-
able, in this case $body-background-color.

You can use one of Bulma’s initial variables: $white-ter. To access it, you need to im-
port it:

// Import the rest of Bulma's initial variables
@import "node modules/bulma/sass/utilities/initial-variables";

All initial variables are now accessible and can be used to update the component vari-
ables.

After having imported the initial variables, but before importing the rest of Bulma, reas-
sign this variable:

$body-background-color : $white-ter;

175

CHAPTER 13: Customizing Bulma

o Bisrzioc Evas Posey

uookr

D Costermars

&) Orders

i [

Pubitamung wt vhe spewd o techralagy

Il Alex Johnson

$7,648

Revenue

Latest orders

1,678

Visitors

Most popular books

Ak Jahnson

This Morn v

20,756

Pageviews

Most loyal customers

787352 $56.98 1 Learning 146 pold) John Miller 7 ordnrs
Niw 19, 17230 Ly Jera S " A Swift \Urited Glatos
289050 $22.89 — 2 Samantha 5 sedtars
New 101145 by samantia toges (EEEERED . W TensorFlow 4 anld Rogers
. Far Machine Unitad Kmngdor
918478 $22.09 T Intelligence
Vo2 2057 by Qirvan Jyftentos - 3 Paul Jacques 2 ceanrs
3 =2 Choosing® a7sold Cangoa
| view 53 arders | davaseript
¢ VT, E00 —! Framework View all custamons l

\
Viww ol bockr |

The next step is to make use of the $large-shadow created earlier. Both the Bulma box
and the card can use it, and the box also requires a bit more padding:

$box-padding: 2rem;
$box-shadow: $large-shadow;

$card-shadow: $large-shadow;

176

Overriding Bulma’s componentvariables

Latest orders

787352 $56.98

MNov 18, 17:38 by John Miller In progress

289050 $22.99
Nov 16, 11:45 by Samantha Rogers

218478 $22.99

Nov 12, 21:57 by Simon Jefferson Failed

View all orders }

In general, the new design is more spaced out. Increase the gap between columns:
$column-gap: 1rem;

Button and inputs still have blue shadow when focused. A gray one looks better here,
combined with a red dropdown arrow:

$button-focus-box-shadow-color : rgba($black, 0.1);

$input-arrow: $red;
$input-focus-box-shadow-color : rgba($black, 0.1);

177

178

CHAPTER 13: Customizing Bulma

This Month w

The sidebar menu is a bit too prominent. These values will turn it grayscale:

$menu-item-color : $grey;
$menu-item-hover-background-color : transparent;
$menu-item-active-background-color : S$Swhite;
Smenu-item-active-color : $black;
Smenu-item-radius : $radius;

MENLU

& Dashboard
& Books
[} customers
[E] Orders

The navbar and the table also need more breathing space:

$navbar-height: 6rem;

$navbar-item-img-max-height : 3rem;
$navbar-item-hover-background-color : transparent;
$navbar-dropdown-border-top : none;

$table-cell-border : 2px solid S$white-ter;
$table-cell-padding: 0.75em 1.5em;

o BLEEDING EDGE PRESS

Updating the HTML

By simply overriding Bulma’s variables, and without writing any CSS, the design has al-
ready changed a lot: new color scheme, additional font, and better spacing.

Updating the HTML

The taller navbar is now more prominent. But the logo is too wide:

of BLEEDING EDGE PRESS

To save horizontal space, split the icon and the type. Replace the logo.png with the
icon.png:

o

Move the type with the tagline:

<div class="navbar-item">
<div>

<small>Publishing at the speed of technology </smalls>
</div>
</div>

179

180

CHAPTER 13: Customizing Bulma

BLEEDING EDGE PRESS

Publishing at the speed of technology

Custom rules

Because Bulma is written in Sass, you can use all of the language’s features:

variables

nesting
e Mmixins
extends

You have already used new variables. To customize the design even more, you can use
extends and nesting.

All of the code from now on has to be written at the end of the file, after having impor-
ted Bulma.

Second font

Bulma doesn’t have a second font family. So you have to write your own CSS rules. Luckily,
the classes are easy to extend.

After @import "node_modules/bulma/bulma"; , write the following:

%heading {
font-family: $family-heading;
font-weight: 500;

}

This is a Sass placeholder: this allows you to combine multiple selectors into a single
rule.

Bigger controls

The Bulma controls (buttons, inputs, select dropdown, pagination links...) are redefined in
this new design: slightly bigger, with no inner shadow or border.
The new control size will be re-used a few times, so it’s better to define a new variable:

Customrules

Scontrol-size: 2.75em;

A few Bulma elements have to be updated at once:

.button,

.input,

.select select,

.pagination-previous,

.pagination-next,

.pagination-1link {
border-width: 0;
box-shadow: none;
height: S$control-size;
padding-left: lem;
padding-right: lem;

Search

The controls with icons and the select dropdown have to accomodate for these bigger
controls:

.control.has-icons-left {
.input,
.select select {
padding-left: S$control-size;

}

.icon {
height: $control-size;
width: Scontrol-size;
}
}

.select {
&:not(.is-multiple) {
height: $control-size;
}
}

.select select {
&:not([multiple]) {
padding-right: $control-size;
}
}

181

CHAPTER 13: Customizing Bulma

Order by Publish date

The use of a Sass variable is very useful here. If you change your mind about the

Scontrol-size, you only need to update the value in one location.
The button borders have been removed, but the outlined buttons still need one:

.button {
&.is-outlined {
border-width: 2px;
}
}

View all orders

The last controls to update are the file upload ones:

.file-cta,

.file-name {
background-color : $Swhite;
border-width: 0;

}

X Choose afile... No file chosen

Using the Rubik font

The Rubik font is bold and modern, which makes it a perfect contender for titles, labels,
and interactive elements like buttons.
Change the button’s default background, and make them bolder with uppercase letters:

182

Customrules

.button {
@extend %heading;
background-color : rgba(#000, 0.05);
text-transform: uppercase;

}

The breadcrumb can follow the same rule:

.breadcrumb {
@extend %heading;
text-transform: uppercase;

}

BOOKS / NEWBOOK

To make the pagination items look like buttons, use Rubik as well and remove the bor-
ders:

.pagination {
@extend %heading;
}

.pagination-previous,

.pagination-next,

.pagination-link {
background-color : $white;
border-width: 0;
min-width: Scontrol-size;

}

47 . 86

183

CHAPTER 13: Customizing Bulma

Updating the sidebar menu

The menu’s component variables have already been updated to make it grayscale. But the
menu still lacks emphasis, and doesn’t fit with the rest of the design anymore.
Rubik in uppercase is the solution:

.menu {
@extend %heading;
text-transform: uppercase;

}

MENU

& DASHBOARD
& BOOKS
3 CUSTOMERS

[=] ORDERS

The menu label is not really required anymore. Instead of updating all HTML files, just
hide it with CSS:

.menu-label {
display: none;

}
By using Sass nesting, you can style the menu listitems and its icons very easily:

.menu-1list {

a {
padding: 0.75em lem;

.icon {
color: S$grey-light;
margin-right: 0.5em;

}

&.is-active {

184

Customrules

box-shadow: $large-shadow;

.icon {
color: Sred;
}
}
}
}

DASHBOARD

& BOOKS
CUSTOMERS
ORDERS

The new shadow, while bigger, is still subtle, and gives emphasis to the active menu
item.

Fixing the navbar

The $large-shadow introduced in the beginning has been used throughout the design.
The only shadow left is the navbar one. Update it with the new one:

.navbar {
&.has-shadow {
box-shadow: $large-shadow;

}
}

The navbar has already been customized through Bulma’s component variables, but
some additional spacing and sizing fixes need to be applied:

.navbar-itenm,
.navbar-1link {
padding: 0.75rem 1.5rem;

185

CHAPTER 13: Customizing Bulma

}

.navbar-1link {
padding-right: 2.5em;
}

.navbar-item {
font-size: $size-5;

}

.navbar-start {
.navbar-item {
line-height: 1;
padding-left: 0;
}
}

(BLEEDING EDCE PRESS Alex Inhs
l Publishing at the apecd of tachnology

This brings all elements closer together.

Better tables

The table, with its white background, looks flat compared to the rest of the interface, al-
though it’s where the primary content lives.
Add a shadow and increase the font size:

.table {
box-shadow: $large-shadow;
font-size: 1.125rem;

}

186

Responsiveness with Bulma mixins

Name Email Country Orders Actions

John Miller johnmillerfgmail . cam Unitea States ! EDIT UELETE

Samantha Rogers samrogersfgrail .com United Kingdom 5 EDIT DELETE

Paul lacques paal.jacques@gmail.con Canada ‘ EDIT DELETE

Name Email Country Orders Actions
Bold titles

The last elements to update are the titles. Since they tell the user on which page they are,
it’s better to emphasize them and provide a hierachy in the content:

.title {
@extend %heading;

}

hi.title {
font-weight: 700;
text-transform: uppercase;

}

BOOKS

Responsiveness with Bulma mixins

The last design fixes required are harder to spot, because they only occur before or after
certain breakpoints.

Since Bulma is fully responsive, some of its components are styled according to the
viewport size.

187

CHAPTER 13: Customizing Bulma

Media

The media items in dashboard.html combine four elements side by side:

« 2media-left
+ 1 media-content

« 1media-right

This makes the components squashed on mobile screens.

L 146 sold

T s Q33T 0

Instead, layout the four elements vertically:

@include mobile() {
.media {
flex-direction: column;

}

.media-left {
margin: 0 0 0.5rem;

}
}

188

Responsiveness with Bulma mixins

Learning Swift
146 sold

The mobile() mixin comes from Bulma itself. It uses the $mobile variable breakpoint
defined in initial-variables.sass . As a result, using this mixin instead of writing your
own media query ensures that the responsiveness you write here is synchronized with
Bulma’s own responsive behavior.

The last task is to fix the navbar dropdown on desktop screens:

@include desktop() {
.navbar-dropdown .navbar-item {
padding: 0.75rem 1.5rem;

.icon {
margin-right: ilem;
}
}
}

189

190

CHAPTER 13: Customizing Bulma

Alex Johnson

@ Profile
¥ Report bug

(# Sign Out

The desktop() mixin also comes from Bulma and uses the $desktop variable.

Final Summary

Thanks to being written in Sass, Bulma is very easy to customize. By overriding a few vari-
ables, you can quickly turn the default design into your own branded one.

Lots of developers have used Bulma as a framework to build upon because it comes
with sensible defaults that ensure a visually balanced and easy to understand interface.
Adding your own personal touch is simply a matter of updating colors, adding some fonts,
and tweaking the spacing.

Bulma is also modular: with the same setup, instead of importing the rest of Bulma, you
can choose to import specific components individually. Each component comes with its
own set of variables. Learn more about modularity.

Check out the Bulma Expo to get inspired.

We hope you have enjoyed this book and are ready to implement Bulma in your own
creations!

